CSE 373: Binary heaps

Michael Lee
Monday, Feb 5, 2018

Course overview

The course so far...

- Reviewing manipulating arrays and nodes
- Algorithm analysis
- Dictionaries (tree-based and hash-based)

Course overview

The course so far...

- Reviewing manipulating arrays and nodes
- Algorithm analysis
- Dictionaries (tree-based and hash-based)

Coming up next:

- Divide-and-conquer, sorting 4
- Graphs \&
- Misc topics (P vs NP, more?)

Timeline

When are we getting project grades/our midterm back?

Timeline

When are we getting project grades/our midterm back?

Tuesday or Wednesday

Timeline

Do we have something due soon?

Timeline

Do we have something due soon?

- Project 3 will be released today or tomorrow

Timeline

Do we have something due soon?

- Project 3 will be released today or tomorrow
- Due dates:
- Part 1 due in two weeks (Fri, Feb 16)
- Full project due in three weeks (Fri, Feb 23)

Timeline

Do we have something due soon?

- Project 3 will be released today or tomorrow
- Due dates:
- Part 1 due in two weeks (Fri, Feb 16)
- Full project due in three weeks (Fri, Feb 23)
- Partner selection
- Selection form due Fri, Feb 9

Timeline

Do we have something due soon?

- Project 3 will be released today or tomorrow
- Due dates:
- Part 1 due in two weeks (Fri, Feb 16)
- Full project due in three weeks (Fri, Feb 23)
- Partner selection
- Selection form due Fri, Feb 9
- You MUST find a new partner...

Timeline

Do we have something due soon?

- Project 3 will be released today or tomorrow
- Due dates:
- Part 1 due in two weeks (Fri, Feb 16)
- Full project due in three weeks (Fri, Feb 23)
- Partner selection
- Selection form due Fri, Feb 9
- You MUST find a new partner...
- ...unless both partners email me and petition to stay together

Today

Motivating question:

Suppose we have a collection of "items".

smallest

We want to return whatever item has the "priority".

The Priority Queue ADT

Specifically, want to implement the Priority Queue ADT:

The Priority Queue ADT

A priority queue stores elements according to their "priority". It supports the following operations:

The Priority Queue ADT

Specifically, want to implement the Priority Queue ADT:

The Priority Queue ADT

A priority queue stores elements according to their "priority". It supports the following operations:

- removeMin: return the element with the smallest priority
- peekMin: find (but do not return) the smallest element
- insert: add a new element to the priority queue

The Priority Queue ADT

An alternative definition: instead of yielding the element with the largest priority, yield the one with the largest priority:
The Priority Queue ADT, alternative definition
A priority queue stores elements according to their "priority". It supports the following operations:

The Priority Queue ADT

An alternative definition: instead of yielding the element with the largest priority, yield the one with the largest priority:

The Priority Queue ADT, alternative definition

A priority queue stores elements according to their "priority". It supports the following operations:

- removeMax: return the element with the largest priority
- peekMax: find (but do not return) the largest element
- insert: add a new element to the priority queue

The way we implement both is almost identical - we just tweak how we compare elements

In this class, we will focus on implementing a "min" priority queue

Initial implementation ideas

Fill in this table with the worst-case runt mes:

Initial implementation ideas

Fill in this table with the worst-case runtimes:

Idea removeMax peekMax insert

Unsorted array list
$\Theta(n)$
$\Theta(n)$
$\Theta(1)$
Unsorted linked list
$\Theta(n)$
$\Theta(n)$
$\Theta(1)$
Sorted array list
Sorted linked list
Binary tree
AVL tree

Initial implementation ideas

Fill in this table with the worst-case runtimes:

Idea removeMax peekMax

Unsorted array list
Unsorted linked list
Sorted array list
$\Theta(1)$
$\Theta(n)$
Sorted linked list
$\Theta(1)$
$\Theta(1)$
$\Theta(n)$
Binary tree
AVL tree

Initial implementation ideas

Fill in this table with the worst-case runtimes:

Idea
Unsorted array list
Unsorted linked list
Sorted array list
Sorted linked list
Binary tree
$\Theta(n)$
$\Theta(n) \quad \Theta(\log (n))$

AVL tree

Initial implementation ideas

Fill in this table with the worst-case runtimes:

Idea removeMax
peekMax
insert
Unsorted array list
Unsorted linked list
Sorted array list
Sorted linked list
Binary tree
AVL tree
$\Theta(\log (n))$
$\Theta(\log (n))$
$\Theta(\log (n))$

Initial implementation ideas

We want something optimized both frequent inserts and removes. An AVL tree (or some tree-ish thing) seems good enough... right?

Initial implementation ideas

We want something optimized both frequent inserts and removes. An AVL tree (or some tree-ish thing) seems good enough... right?

Today: learn how to implement a binary heap. peekMin is $\mathcal{O}(1)$, and insert and remove are still $\mathcal{O}(\log (n))$ in the worst case.

However, insert is $\mathcal{O}(1)$ in the average case!

Binary heap invariants

Idea: adapt the tree-based method

Binary heap invariants

Idea: adapt the tree-based method
Insight: in a tree, finding the min is expensive! Rather then having it to the left, have it on the top!

Binary heap invariants

Idea: adapt the tree-based method
Insight: in a tree, finding the min is expensive! Rather then having it to the left, have it on the top!

A BST or AVL tree

Binary heap invariants

We now need to change our invariants...
Binary heap invariants
A binary heap has three invariants:

- Num children: Every node has at most 2 children

Binary heap invariants

We now need to change our invariants...
Binary heap invariants
A binary heap has three invariants:

- Num children: Every node has at most 2 children
- Heap: Every node is smaller then its children

Binary heap invariants

We now need to change our invariants...
Binary heap invariants
A binary heap has three invariants:

- Num children: Every node has at most 2 children
- Heap: Every node is smaller then its children
- Structure: Every heap is a "complete" tree - it has no "gaps"

Example of a heap

A broken heap

Example of a heap

A fixed heap

The heap invariant

Are these all heaps?

0

Implementing peekMin

How do we implement peekMin?

Implementing peekMin

How do we implement peekMin?

Easy: just return the root. Runtime: $\Theta(1)$.

Implementing removeMin

What about removeMin?

Implementing removeMin

What about removeMin?
Step 1: Just remove it!
2

Implementing removeMin

What about removeMin?
Step 1: Just remove it!

Problem: Structure invariant is broken - the tree has a gap!

Implementing removeMin

How do we fix the gap?

Implementing removeMin

How do we fix the gap?
Step 2: Plug the gap by moving the last element to the top!

Implementing removeMin

How do we fix the gap?
Step 2: Plug the gap by moving the last element to the top!

Problem: Heap invariant is broken -11 is not smaller then 4 or 7 !

Implementing removeMin

How do we fix the heap invariant?

Implementing removeMin

How do we fix the heap invariant?
Step 3: "percolate down" - keep swapping node with smallest child

Implementing removeMin

How do we fix the heap invariant?
Step 3: "percolate down" - keep swapping node with smallest child

Implementing removeMin

How do we fix the heap invariant?
Step 3: "percolate down" - keep swapping node with smallest child

And we're done!

Practice

Practice: What happens if we call removeMin?

Practice

Practice: What happens if we call removeMin?
After removing min:

Analyzing removeMin

The percolateDown algorithm

```
percolateDown(node) {
    while (node.data is bigger then children) {
        swap data with smaller child
    }
}
```


Analyzing removeMin

The percolateDown algorithm

```
percolateDown(node) {
    while (node.data is bigger then children) {
        swap data with smaller child
    }
}
```

The runtime?

Analyzing removeMin

The percolateDown algorithm

```
percolateDown(node) {
    while (node.data is bigger then children) {
        swap data with smaller child
    }
}
```

The runtime?
findLastNodeTime + removeRootTime + numSwaps \times swapTime

This ends up being:

$$
\stackrel{n}{n}
$$

...which is in mumbluming $\theta(n)$

Implementing insert

What about insert? Suppose we insert 3 - what happens?

Implementing insert

What about insert? Suppose we insert 3 - what happens?
Step 1: insert at last available node

Implementing insert

What about insert? Suppose we insert 3 - what happens?
Step 1: insert at last available node

Problem: heap invariant broken! 7 is not smaller then 3 !

Implementing insert

How do we fix the heap invariant?

Implementing insert

How do we fix the heap invariant?
Step 2: "percolate up" - keep swapping node with parent until heap invariant is fixed

Implementing insert

How do we fix the heap invariant?
Step 2: "percolate up" - keep swapping node with parent until heap invariant is fixed

Implementing insert

How do we fix the heap invariant?
Step 2: "percolate up" - keep swapping node with parent until heap invariant is fixed

All ok!

Practice

Practice: What happens if we insert 3?

Practice

Practice: What happens if we insert 3?
After inserting 3:

Analyzing insert

The percolateUp algorithm

```
percolateUp(node) {
    while (node.data is smaller then parent) {
        swap data with parent
    }
}
```


Analyzing insert

The percolateUp algorithm

```
percolateUp(node) {
    while (node.data is smaller then parent) {
        swap data with parent
    }
}
```

The runtime?

Analyzing insert

The percolateUp algorithm

```
percolateUp(node) {
    while (node.data is smaller then parent) {
        swap data with parent
    }
}
```

The runtime?
findLastNodeTime + addNodeToLastTime + numSwaps \times swapTime

This ends up being:

$$
\operatorname{mim}_{\min }+1+\log (n) \cdot 1
$$

...which is in minnemen $\theta(n)$

Analyzing removeMin, part 2

Problem: But wait! I promised worst-case $\Theta(\log (n))$ insert and average-case Θ (1) insert.

This algorithm is in both the worst and average case! $\theta(n)$

Analyzing removeMin, part 2

Problem: But wait! I promised worst-case $\Theta(\log (n))$ insert and average-case $\Theta(1)$ insert.

This algorithm is in both the worst and average case!
$\theta(n)$

Why: Finding and modifying the last node is slow: requires traversal!

Can we speed it up?

Analyzing removeMin, part 2

Remember this slide?

Idea
removeMax peekMax insert

Analyzing removeMin, part 2

Observation:

- Arrays let us find and append to the end quickly
- Trees let us have nice $\log (n)$ traversal behavior

Analyzing removeMin, part 2

Observation:

- Arrays let us find and append to the end quickly
- Trees let us have nice $\log (n)$ traversal behavior

The trick: Why pick one or the other? Let's do both!

The array-based representation of binary heaps

Take a tree:

The array-based representation of binary heaps

Take a tree:

And fill an array in the level-order of the tree:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	B	C	D	E	F	G	H	I	J	K	L			

The array-based representation of binary heaps

Take a tree:
How do we find parent?

$$
\operatorname{parent}(i)=\left\lfloor\frac{i-1}{2}\right\rfloor
$$

The left child?

$$
\operatorname{leftChild}(i)=2 i+1
$$

The right child?

$$
\operatorname{leftChild}(i)=2 i+2
$$

And fill an array in the level-order of the tree:

$$
2 \cdot 1+1=3
$$

0	(1)	2	3	4	5	6	7	8	9	10	11	12	13	14
A	B	C	D	E	F	G	H	I	J	K	L			

Finding the last node

If our tree is represented using an array, what's the time needed to find the last node now?

Finding the last node

If our tree is represented using an array, what's the time needed to find the last node now?
$\Theta(1):$ just use this.array[this.size - 1].

Finding the last node

If our tree is represented using an array, what's the time needed to find the last node now?
$\Theta(1):$ just use this.array[this.size - 1].
...assuming array has no 'gaps'. (Hey, it looks like the structure invariant was useful after all)

Re-analyzing insert

How does this change runtime of insert?

Re-analyzing insert

How does this change runtime of insert?
Runtime of insert:
findLastNodeTime + addNodeToLastTime + numSwaps \times swapTime

...which is:

$$
\underset{1+1+\text { numswaps } \times 1}{\log (n)} \quad O(\log (n))
$$

Re-analyzing insert

How does this change runtime of insert?
Runtime of insert:
findLastNodeTime + addNodeToLastTime + numSwaps \times swapTime
...which is:

$$
1+1+\text { numSwaps } \times 1
$$

Observation: when percolating, we usually need to percolate up a few times! So, numSwaps ≈ 1 in the average case, and numSwaps \approx height $=\log (n)$ in the worst case!

Re-analyzing removeMin

How does this change runtime of removeMin?

Re-analyzing removeMin

How does this change runtime of removeMin?
Runtime of removeMin:
findLastNodeTime + removeRootTime + numSwaps \times swapTime
...which is:

$$
1+1+\text { numSwaps } \times 1
$$

Re-analyzing removeMin

How does this change runtime of removeMin?
Runtime of removeMin:
findLastNodeTime + removeRootTime + numSwaps \times swapTime
...which is:

$$
1+1+\text { numSwaps } \times 1
$$

Observation: unfortunately, in practice, usually must percolate all the way down. So numSwaps \approx height $\approx \log (n)$ on average.

