CSE 373: Binary heaps

Michael Lee
Monday, Feb 5, 2018

Timeline

When are we getting project grades/our midterm back?

Tuesday or Wednesday

The course so far...

- Reviewing manipulating arrays and nodes
- Algorithm analysis
- Dictionaries (tree-based and hash-based)

Coming up next:

- Divide-and-conquer, sorting
- Graphs
- Misc topics (P vs NP, more?)

Timeline

Do we have something due soon?

- Project 3 will be released today or tomorrow
- Due dates:
- Part 1 due in two weeks (Fri, Feb 16)
- Full project due in three weeks (Fri, Feb 23)
- Partner selection
- Selection form due Fri, Feb 9
- You MUST find a new partner.
- ...unless both partners email me and petition to stay together

Today

Motivating question:

Suppose we have a collection of "items".
We want to return whatever item has the smallest "priority".

The Priority Queue ADT

Specifically, want to implement the Priority Queue ADT:
The Priority Queue ADT
A priority queue stores elements according to their "priority". It supports the following operations:

- removeMin: return the element with the smallest priority
- peekMin: find (but do not return) the smallest element
- insert: add a new element to the priority queue

The Priority Queue ADT

Initial implementation ideas
An alternative definition: instead of yielding the element with the largest priority, yield the one with the largest priority:
The Priority Queue ADT, alternative definition
A priority queue stores elements according to their "priority". It supports the following operations:

- removeMax: return the element with the largest priority
- peekMax: find (but do not return) the largest element
- insert: add a new element to the priority queue

The way we implement both is almost identical - we just tweak how we compare elements
In this class, we will focus on implementing a "min" priority queue

Initial implementation ideas

We want something optimized both frequent inserts and removes. An AVL tree (or some tree-ish thing) seems good enough... right?

Today: learn how to implement a binary heap.
peekMin is $\mathcal{O}(1)$, and insert and remove are still $\mathcal{O}(\log (n))$ in the worst case.

However, insert is $\mathcal{O}(1)$ in the average case!

Fill in this table with the worst-case runtimes:

Idea	removeMin	peekMin	insert
Unsorted array list	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
Unsorted linked list	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
Sorted array list	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
Sorted linked list	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
Binary tree	$\Theta(n)$	$\Theta(n)$	$\Theta(\log (n))$
AVL tree	$\Theta(\log (n))$	$\Theta(\log (n))$	$\Theta(\log (n))$

Binary heap invariants

Idea: adapt the tree-based method
Insight: in a tree, finding the min is expensive! Rather then having it to the left, have it on the top!

A BST or AVL tree

A broken heap

Example of a heap

A fixed heap

The heap invariant
Are these all heaps?

14

Implementing peekMin

How do we implement peekMin?

Easy: just return the root. Runtime: $\Theta(1)$.

Implementing removeMin

How do we fix the gap?
Step 2: Plug the gap by moving the last element to the top!

How do we fix the heap invariant?
Step 3: "percolate down" - keep swapping node with smallest child

Practice

Practice: What happens if we call removeMin?
After removing min:

Implementing insert

What about insert? Suppose we insert 3 - what happens?
Step 1: insert at last available node

Implementing insert

How do we fix the heap invariant?
Step 2: "percolate up" - keep swapping node with parent until heap invariant is fixed

Analyzing insert

The percolateUp algorithm

```
percolatelp(node) (
        while (node.data is smaller then parent) (
        smap dots with parent
    , )
3
```

The runtime?
findLastNodeTime + addNodeToLastTime + numSwaps \times swap Time

This ends up being:

$$
n+1+\log (n) \cdot 1
$$

...which is in $\Theta(n)$.

Problem: But wait! I promised worst-case $\Theta(\log (n))$ insert and average-case Θ (1) insert.
This algorithm is $\Theta(\log (n))$ in both the worst and average case!

Why: Finding and modifying the last node is slow: requires traversal!

Can we speed it up?

Remember this slide?

Idea	removeMax	peekMax	insert
Unsorted array list	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
Unsorted linked list	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
Sorted array list	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
Sorted linked list	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
Binary tree	$\Theta(n)$	$\Theta(n)$	$\Theta(\log (n))$
AVL tree	$\Theta(\log (n))$	$\Theta(\log (n))$	$\Theta(\log (n))$

Analyzing removeMin, part 2

Observation:

- Arrays let us find and append to the end quickly
- Trees let us have nice $\log (n)$ traversal behavior

The trick: Why pick one or the other? Let's do both!

The array-based representation of binary heaps

Take a tree:

How do we find parent?

$$
\text { parent }(i)=\left\lfloor\frac{i-1}{2}\right\rfloor
$$

The left child?
leftChild $(i)=2 j+1$
The right child?

$$
\operatorname{leftChild}(i)=2 i+2
$$

And fill an array in the level-order of the tree:

Re-analyzing insert

How does this change runtime of insert?
Runtime of insert:
findLastNodeTime + addNodeToLastTime + numSwaps \times swap Time
..which is:

$$
1+1+\text { numSwaps } \times 1
$$

Observation: when percolating, we usually need to percolate up a
few times! So, numSwaps ≈ 1 in the average case, and numSwaps \approx height $=\log (n)$ in the worst case!

How does this change runtime of removemin?
Runtime of removeMin:
findLastNodeTime + removeRootTime + numSwaps \times swapTime
...which is:

$$
1+1+\text { numSwaps } \times 1
$$

Observation: unfortunately, in practice, usually must percolate all the way down. So numSwaps \approx height $\approx \log (n)$ on average.
\square
\square
\square

