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Course overview

The course so far...

I Reviewing manipulating arrays and nodes
I Algorithm analysis
I Dictionaries (tree-based and hash-based)

Coming up next:

I Divide-and-conquer, sorting
I Graphs
I Misc topics (P vs NP, more?)
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Timeline

When are we getting project grades/our midterm back?

Tuesday or Wednesday
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Timeline

Do we have something due soon?

I Project 3 will be released today or tomorrow
I Due dates:

I Part 1 due in two weeks (Fri, Feb 16)
I Full project due in three weeks (Fri, Feb 23)

I Partner selection
I Selection form due Fri, Feb 9
I You MUST find a new partner...
I ...unless both partners email me and petition to stay together
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Today

Motivating question:

Suppose we have a collection of “items”.

We want to return whatever item has the smallest “priority”.
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The Priority Queue ADT

Specifically, want to implement the Priority Queue ADT:

The Priority Queue ADT
A priority queue stores elements according to their “priority”. It
supports the following operations:

I removeMin: return the element with the smallest priority
I peekMin: find (but do not return) the smallest element
I insert: add a new element to the priority queue
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The Priority Queue ADT

An alternative definition: instead of yielding the element with the
largest priority, yield the one with the largest priority:
The Priority Queue ADT, alternative definition
A priority queue stores elements according to their “priority”. It
supports the following operations:

I removeMax: return the element with the largest priority
I peekMax: find (but do not return) the largest element
I insert: add a new element to the priority queue

The way we implement both is almost identical – we just tweak
how we compare elements

In this class, we will focus on implementing a “min” priority queue
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Initial implementation ideas

Fill in this table with the worst-case runtimes:

Idea removeMin peekMin insert

Unsorted array list Θ(n) Θ (n) Θ (1)

Unsorted linked list Θ(n) Θ (n) Θ (1)

Sorted array list Θ(1) Θ (1) Θ (n)
Sorted linked list Θ(1) Θ (1) Θ (n)
Binary tree Θ(n) Θ (n) Θ (log(n))
AVL tree Θ(log(n)) Θ (log(n)) Θ (log(n))
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Initial implementation ideas

We want something optimized both frequent inserts and removes.

An AVL tree (or some tree-ish thing) seems good enough... right?

Today: learn how to implement a binary heap.

peekMin is O (1), and insert and remove are still O (log(n)) in
the worst case.

However, insert is O (1) in the average case!
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Binary heap invariants

Idea: adapt the tree-based method

Insight: in a tree, finding the min is expensive! Rather then
having it to the left, have it on the top!

A BST or AVL tree A binary heap
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Binary heap invariants

We now need to change our invariants...

Binary heap invariants
A binary heap has three invariants:

I Num children: Every node has at most 2 children
I Heap: Every node is smaller then its children
I Structure: Every heap is a “complete” tree – it has no “gaps”
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Example of a heap

A broken heap
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Example of a heap

A fixed heap
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The heap invariant

Are these all heaps?
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Implementing peekMin

How do we implement peekMin?
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Easy: just return the root. Runtime: Θ(1).
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Implementing removeMin

What about removeMin?

Step 1: Just remove it!
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Problem: Structure invariant is broken – the tree has a gap!
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Implementing removeMin

How do we fix the gap?

Step 2: Plug the gap by moving the last element to the top!
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Problem: Heap invariant is broken – 11 is not smaller then 4 or 7!

17

Implementing removeMin

How do we fix the heap invariant?

Step 3: “percolate down” – keep swapping node with smallest child
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And we’re done!
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Practice

Practice: What happens if we call removeMin?

After removing min:
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Analyzing removeMin

The percolateDown algorithm

percolateDown(node) {

while (node.data is bigger then children) {

swap data with smaller child

}

}

The runtime?

findLastNodeTime + removeRootTime + numSwaps × swapTime

This ends up being:
n + 1 + log(n) · 1

...which is in Θ(n).
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Implementing insert

What about insert? Suppose we insert 3 – what happens?

Step 1: insert at last available node
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Problem: heap invariant broken! 7 is not smaller then 3!
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Implementing insert

How do we fix the heap invariant?

Step 2: “percolate up” – keep swapping node with parent until
heap invariant is fixed
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All ok!
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Practice

Practice: What happens if we insert 3?

After inserting 3:
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Analyzing insert

The percolateUp algorithm

percolateUp(node) {

while (node.data is smaller then parent) {

swap data with parent

}

}

The runtime?

findLastNodeTime+addNodeToLastTime+numSwaps×swapTime

This ends up being:
n + 1 + log(n) · 1

...which is in Θ(n).
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Analyzing removeMin, part 2

Problem: But wait! I promised worst-case Θ(log(n)) insert and
average-case Θ(1) insert.

This algorithm is Θ(log(n)) in both the worst and average case!

Why: Finding and modifying the last node is slow: requires
traversal!

Can we speed it up?
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Analyzing removeMin, part 2

Remember this slide?

Idea removeMax peekMax insert

Unsorted array list Θ(n) Θ (n) Θ (1)

Unsorted linked list Θ(n) Θ (n) Θ (1)

Sorted array list Θ(1) Θ (1) Θ (n)
Sorted linked list Θ(1) Θ (1) Θ (n)
Binary tree Θ(n) Θ (n) Θ (log(n))
AVL tree Θ(log(n)) Θ (log(n)) Θ (log(n))
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Analyzing removeMin, part 2

Observation:

I Arrays let us find and append to the end quickly
I Trees let us have nice log(n) traversal behavior

The trick: Why pick one or the other? Let’s do both!
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The array-based representation of binary heaps

Take a tree:
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How do we find parent?

parent(i) =
⌊

i − 1

2

⌋
The left child?

leftChild(i) = 2i + 1

The right child?

leftChild(i) = 2i + 2

And fill an array in the level-order of the tree:
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Finding the last node

If our tree is represented using an array, what’s the time needed to
find the last node now?

Θ(1): just use this.array[this.size - 1].

...assuming array has no ’gaps’. (Hey, it looks like the structure
invariant was useful after all)
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Re-analyzing insert

How does this change runtime of insert?

Runtime of insert:

findLastNodeTime+addNodeToLastTime+numSwaps×swapTime

...which is:
1 + 1 + numSwaps × 1

Observation: when percolating, we usually need to percolate up a
few times! So, numSwaps ≈ 1 in the average case, and
numSwaps ≈ height = log(n) in the worst case!
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Re-analyzing removeMin

How does this change runtime of removeMin?

Runtime of removeMin:

findLastNodeTime + removeRootTime + numSwaps × swapTime

...which is:
1 + 1 + numSwaps × 1

Observation: unfortunately, in practice, usually must percolate all
the way down. So numSwaps ≈ height ≈ log(n) on average.
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