CSE 373: Asymptotic Analysis, BSTs

Michael Lee

Friday, Jan 12, 2018

Warmup questions

Warmup: True or false:

- $ightharpoonup 5n + 3 \in \mathcal{O}(n)$
- $ightharpoonup n \in \mathcal{O}(5n+3)$
- $ightharpoonup 5n + 3 = \mathcal{O}(n)$
- $\triangleright \mathcal{O}(5n+3) = \mathcal{O}(n)$
- $\triangleright \mathcal{O}(n^2) = \mathcal{O}(n)$
- $ightharpoonup n^2 \in \mathcal{O}(1)$
- $ightharpoonup n^2 \in \mathcal{O}(n)$
- $ightharpoonup n^2 \in \mathcal{O}\left(n^2\right)$
- $ightharpoonup n^2 \in \mathcal{O}\left(n^3\right)$
- $ightharpoonup n^2 \in \mathcal{O}\left(n^{100}\right)$

Warmup questions

Warmup: True or false:

$$ightharpoonup 5n + 3 \in \mathcal{O}(n)$$

$$ightharpoonup n \in \mathcal{O}(5n+3)$$

$$ightharpoonup 5n + 3 = \mathcal{O}(n)$$

$$\triangleright \mathcal{O}(5n+3) = \mathcal{O}(n)$$

$$\triangleright \mathcal{O}(n^2) = \mathcal{O}(n)$$

$$ightharpoonup n^2 \in \mathcal{O}(1)$$

$$ightharpoonup n^2 \in \mathcal{O}(n)$$

$$ightharpoonup n^2 \in \mathcal{O}\left(n^2\right)$$

$$ightharpoonup n^2 \in \mathcal{O}\left(n^3\right)$$

$$ightharpoonup n^2 \in \mathcal{O}\left(n^{100}\right)$$

Definition: Dominated by

Definition: Dominated by

A function f(n) is **dominated by** g(n) when...

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...
- ▶ $f(n) \le c \cdot g(n)$ is true

Definition: Big- \mathcal{O}

 $\mathcal{O}\left(f(n)\right)$ is the "family" or "set" of **all** functions that are **dominated by** f(n)

Definitions: Dominates

 $f(n) \in \mathcal{O}(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"?

Definitions: Dominates

 $f(n) \in \mathcal{O}(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say f(n) dominates g(n) when:

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...
- ▶ $f(n) \ge c \cdot g(n)$ is true

Definitions: Dominates

 $f(n) \in \mathcal{O}(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say f(n) **dominates** g(n) when:

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...
- ▶ $f(n) \ge c \cdot g(n)$ is true

Definition: Big- Ω

 $\Omega(f(n))$ is the family of all functions that **dominates** f(n).

A few more questions...

True or false?

$$ightharpoonup 4n^2 \in \Omega(1)$$

$$ightharpoonup 4n^2 \in \Omega(n)$$

$$\blacktriangleright 4n^2 \in \Omega(n^2)$$

$$ightharpoonup 4n^2 \in \Omega\left(n^3\right)$$

$$\blacktriangleright 4n^2 \in \Omega\left(n^4\right)$$

$$ightharpoonup 4n^2 \in \mathcal{O}(1)$$

$$\blacktriangleright 4n^2 \in \mathcal{O}(n)$$

$$ightharpoonup 4n^2 \in \mathcal{O}\left(n^2\right)$$

$$ightharpoonup 4n^2 \in \mathcal{O}\left(n^3\right)$$

$$\blacktriangleright 4n^2 \in \mathcal{O}\left(n^4\right)$$

A few more questions...

True or false?

- ► $4n^2 \in \Omega(1)$ True
- ▶ $4n^2 \in \Omega(n)$ True
- ▶ $4n^2 \in \Omega(n^2)$ True
- ▶ $4n^2 \in \Omega(n^3)$ False
- ▶ $4n^2 \in \Omega(n^4)$ False

- ▶ $4n^2 \in \mathcal{O}(1)$ False
- ▶ $4n^2 \in \mathcal{O}(n)$ False
- ▶ $4n^2 \in \mathcal{O}(n^2)$ True
- ▶ $4n^2 \in \mathcal{O}(n^3)$ True
- ▶ $4n^2 \in \mathcal{O}\left(n^4\right)$ True

Definition: Big-⊖

Definition: Big- Θ

We say $f(n) \in \Theta(g(n))$ when both:

- ▶ $f(n) \in \mathcal{O}(g(n))$ and...
- $ightharpoonup f(n) \in \Omega(g(n))$

...are true.

Definition: Big-⊖

Definition: Big-⊖

We say $f(n) \in \Theta(g(n))$ when both:

- ▶ $f(n) \in \mathcal{O}(g(n))$ and...
- $ightharpoonup f(n) \in \Omega(g(n))$

...are true.

Note: in industry, it's common for many people to ask for the big- $\mathcal O$ when they really want the big- Θ !

Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of n.

Assume the println takes c time.

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("Foo!");
    }
}</pre>
```

Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of n.

Assume the println takes c time.

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("Foo!");
    }
}</pre>
```

A handwavy answer: $T(n) = 0c + 1c + 2c + 3c + \ldots + (n-1)c$

Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of n.

Assume the println takes c time.

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("Foo!");
    }
}</pre>
```

A handwavy answer: $T(n) = 0c + 1c + 2c + 3c + \ldots + (n-1)c$

A not-handwavy answer:
$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c_j$$

Strategies:

► Wolfram Alpha

- ► Wolfram Alpha
- ► Apply summation identities

- ▶ Wolfram Alpha
- ► Apply summation identities

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c =$$

Strategies:

- ► Wolfram Alpha
- ► Apply summation identities

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \sum_{i=0}^{n-1} ci$$

Summation of a constant

Strategies:

- ► Wolfram Alpha
- ► Apply summation identities

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \sum_{i=0}^{n-1} ci$$
 Summation of a constant
$$= c \sum_{i=0}^{n-1} i$$
 Factoring out a constant

8

- ► Wolfram Alpha
- ► Apply summation identities

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \sum_{i=0}^{n-1} ci$$
 Summation of a constant
$$= c \sum_{i=0}^{n-1} i$$
 Factoring out a constant
$$= c \frac{n(n-1)}{2}$$
 Gauss's identity

- ► Wolfram Alpha
- ► Apply summation identities

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \sum_{i=0}^{n-1} ci$$
 Summation of a constant
$$= c \sum_{i=0}^{n-1} i$$
 Factoring out a constant
$$= c \frac{n(n-1)}{2}$$
 Gauss's identity

So,
$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \frac{c}{2}n^2 - \frac{c}{2}n$$

- ► Wolfram Alpha
- Apply summation identities

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \sum_{i=0}^{n-1} ci$$
 Summation of a constant
$$= c \sum_{i=0}^{n-1} i$$
 Factoring out a constant
$$= c \frac{n(n-1)}{2}$$
 Gauss's identity

So,
$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \underbrace{\frac{c}{2}n^2 - \frac{c}{2}n}_{\text{closed form}}$$

Exercise: model the worst-case runtime using summations, find a closed form, find the big-Theta bound.

```
public void mystery2(int[] arr) {
    for (int i = 5; i < arr.length; i++) {
        int c = 0;
        for (int j = i; j < arr.length; j++) {
            c += arr[j];
        }
        System.out.println(c);
    }
}</pre>
```

Exercise: model the worst-case runtime using summations, find a closed form, find the big-Theta bound.

```
public void mystery2(int[] arr) {
    for (int i = 5; i < arr.length; i++) {
        int c = 0;
        for (int j = i; j < arr.length; j++) {
            c += arr[j];
        }
        System.out.println(c);
    }
}</pre>
```

Model: Let n be the array length. Then, $T(n) = \sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1$

$$\sum_{i=5}^{n-1} \sum_{i=i}^{n-1} 1 =$$

$$\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 = \sum_{i=5}^{n-1} \left(\sum_{j=0}^{n-1} 1 - \sum_{j=0}^{i-1} 1 \right)$$

Normalize lower bound

$$\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 = \sum_{i=5}^{n-1} \left(\sum_{j=0}^{n-1} 1 - \sum_{j=0}^{i-1} 1 \right)$$
$$= \sum_{i=5}^{n-1} (n-i)$$

Normalize lower bound

Apply identity

$$\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 = \sum_{i=5}^{n-1} \left(\sum_{j=0}^{n-1} 1 - \sum_{j=0}^{i-1} 1\right)$$
 Normalize lower bound
$$= \sum_{i=5}^{n-1} (n-i)$$
 Apply identity
$$= \sum_{i=0}^{n-1} (n-i) - \sum_{i=0}^{5-1} (n-i)$$
 Normalize lower bound

$$\sum_{i=5}^{n-1}\sum_{j=i}^{n-1}1=\sum_{i=5}^{n-1}\left(\sum_{j=0}^{n-1}1-\sum_{j=0}^{i-1}1\right) \qquad \text{Normalize lower bound}$$

$$=\sum_{i=5}^{n-1}\left(n-i\right) \qquad \text{Apply identity}$$

$$=\sum_{i=0}^{n-1}\left(n-i\right)-\sum_{i=0}^{5-1}\left(n-i\right) \qquad \text{Normalize lower bound}$$

$$=\sum_{i=0}^{n-1}n-\sum_{i=0}^{n-1}i-\sum_{i=0}^{5-1}n+\sum_{i=0}^{5-1}i \quad \text{Split summations}$$

$$\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 = \sum_{i=5}^{n-1} \left(\sum_{j=0}^{n-1} 1 - \sum_{j=0}^{i-1} 1\right)$$
 Normalize lower bound
$$= \sum_{i=5}^{n-1} (n-i)$$
 Apply identity
$$= \sum_{i=0}^{n-1} (n-i) - \sum_{i=0}^{5-1} (n-i)$$
 Normalize lower bound
$$= \sum_{i=0}^{n-1} n - \sum_{i=0}^{n-1} i - \sum_{i=0}^{5-1} n + \sum_{i=0}^{5-1} i$$
 Split summations
$$= n^2 - \frac{n(n-1)}{2} - 5n + 10$$
 Apply identities

Handling recursive functions

Exercise: model the worst-case runtime of this method.

```
public static int sum(int[] arr) {
    return sumHelper(0, int[] arr);
}

private static int sumHelper(int curr, int[] arr) {
    if (curr == arr.length) {
        return 0;
    } else {
        return arr[curr] + sumHelper(curr + 1);
    }
}
```

Handling recursive functions

Exercise: model the worst-case runtime of this method.

```
public static int sum(int[] arr) {
    return sumHelper(0, int[] arr);
}

private static int sumHelper(int curr, int[] arr) {
    if (curr == arr.length) {
        return 0;
    } else {
        return arr[curr] + sumHelper(curr + 1);
    }
}
```

Answer: create a recurrence.

$$\mathcal{T}(\textit{n}) = egin{cases} c_1 & ext{when n} = 0 \ c_2 + \mathcal{T}(\textit{n} - 1) & ext{otherwise} \end{cases}$$

Note: here, n is the number of items we need to visit, and c_1 and c_2 are some constants.

Simplifying recurrences

How do we find a closed form for:

$$\mathcal{T}(n) = egin{cases} c_1 & ext{when n} = 0 \ c_2 + \mathcal{T}(n-1) & ext{otherwise} \end{cases}$$

One method: the "unfolding" method.

Simplifying recurrences

How do we find a closed form for:

$$\mathcal{T}(n) = egin{cases} c_1 & ext{when n} = 0 \ c_2 + \mathcal{T}(n-1) & ext{otherwise} \end{cases}$$

One method: the "unfolding" method.

Observation: when
$$n = 4$$
, $T(n) = c_2 + (c_2 + (c_2 + (c_2 + c_1)))$

Simplifying recurrences

How do we find a closed form for:

$$\mathcal{T}(\textit{n}) = egin{cases} c_1 & ext{when n} = 0 \ c_2 + \mathcal{T}(\textit{n} - 1) & ext{otherwise} \end{cases}$$

One method: the "unfolding" method.

Observation: when n = 4, $T(n) = c_2 + (c_2 + (c_2 + (c_2 + c_1)))$

We repeat c_2 four times, so $T(4) = 4c_2 + c_1$.

After generalizing: $T(n) = c_1 + \sum_{i=0}^{n-1} c_2 = c_1 + c_2 n$.

The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value.

The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value.

Supported operations:

- ▶ get: Retrieves the value corresponding to the given key
- ▶ put: Updates the value corresponding to the given key
- remove: Removes the given key (and corresponding value)
- ► containsKey: Returns whether dictionary contains given key
- ▶ size: Returns the number of key-value pairs

The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value.

Supported operations:

- ▶ get: Retrieves the value corresponding to the given key
- ▶ put: Updates the value corresponding to the given key
- ► remove: Removes the given key (and corresponding value)
- ► containsKey: Returns whether dictionary contains given key
- ▶ size: Returns the number of key-value pairs

Alternative names: map, lookup table

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

Supported operations:

- ▶ add: Adds the given item to the set
- ▶ remove: Removes the given item to the set
- **contains:** Returns 'true' if the set contains this item
- ▶ size: Returns the number of items in the set

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

Supported operations:

- ▶ add: Adds the given item to the set
- ▶ remove: Removes the given item to the set
- ▶ contains: Returns 'true' if the set contains this item
- ▶ size: Returns the number of items in the set

Two questions:

- 1. Do sets (and dictionaries) need to 'order' items in some way?
- 2. We can implement a set on top of some dictionary: how?

Algorithm design practice: ArrayDictionary

Ex: consider your ArrayDictionary implementation; fill in table:

Operation	Description of algorithm	Big-⊖ bound
get		
put		
remove		
containsKey		

Algorithm design practice: ArrayDictionary

Ex: consider your ArrayDictionary implementation; fill in table:

Operation	Description of algorithm	$Big\text{-}\Theta bound$
get	Scan through the internal array, see if the key exists. Return value if it does.	$\Theta\left(n\right)$
put	Scan through the internal array, replace the value if we find the key-value pair.	$\Theta\left(n\right)$
remove	Otherwise, add the new pair at the end. Scan through the internal array and find the key-value pair. Remove it, and shift over the remaining elements.	$\Theta\left(n\right)$
containsKey	Scan through the array	$\Theta\left(\mathbf{n}\right)$

Idea: exploit additional property of keys

Observation: sometimes, keys are *comparable* and *sortable*.

Idea: exploit additional property of keys

Observation: sometimes, keys are *comparable* and *sortable*.

Idea: Can we exploit the "sortability" of these keys?

Design practice: implementing get

Suppose we add the following **invariant** to ArrayDictionary:

SortedArrayDictionary invariant

The internal array, at all times, must remain sorted.

How do you implement get? What's the big- Θ bound?

```
Core algorithm (in pseudocode):
 public V get(K key):
     return search(key, 0, this.size)
 private K search(K key, int lowIndex, int highIndex):
     if lowIndex > highIndex:
         key not found, throw an exception
     else:
         middleIndex = average of lowIndex and highIndex
         pair = this.array[middleIndex]
         if pair.kev == kev:
             return pair.value
         else if pair.kev < kev:</pre>
             return search(key, lowIndex, middleIndex)
         else if pair.key > key:
             return search(kev. middleIndex + 1. highIndex)
```

Core algorithm (in *pseudocode*):

```
public V get(K key):
    return search(key, 0, this.size)
private K search(K key, int lowIndex, int highIndex):
    if lowIndex > highIndex:
        key not found, throw an exception
    else:
        middleIndex = average of lowIndex and highIndex
        pair = this.array[middleIndex]
        if pair.key == key:
            return pair.value
        else if pair.kev < kev:</pre>
            return search(kev. lowIndex. middleIndex)
        else if pair.key > key:
            return search(kev. middleIndex + 1. highIndex)
```

Ex: model the worst-case runtime. Assume the time needed to compare two keys takes c time. Let n = ???

Core algorithm (in *pseudocode*):

```
public V get(K key):
    return search(key, 0, this.size)
private K search(K key, int lowIndex, int highIndex):
    if lowIndex > highIndex:
        key not found, throw an exception
    else:
        middleIndex = average of lowIndex and highIndex
        pair = this.array[middleIndex]
        if pair.key == key:
            return pair.value
        else if pair.kev < kev:</pre>
            return search(kev. lowIndex. middleIndex)
        else if pair.key > key:
            return search(kev. middleIndex + 1. highIndex)
```

Ex: model the worst-case runtime. Assume the time needed to compare two keys takes c time. Let $n = \mathsf{highIndex} - \mathsf{lowIndex}$.

```
Core algorithm (in pseudocode):
 public V get(K key):
      return search(key, 0, this.size)
 private K search(K key, int lowIndex, int highIndex):
      if lowIndex > highIndex:
          key not found. throw an exception
      else:
          middleIndex = average of lowIndex and highIndex
          pair = this.array[middleIndex]
          if pair.key == key:
               return pair.value
          else if pair.kev < kev:</pre>
               return search(kev. lowIndex. middleIndex)
          else if pair.key > key:
               return search(kev. middleIndex + 1. highIndex)
              Answer: T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T(\frac{n}{2}) & \text{Otherwise} \end{cases}
```

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form?

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t=\text{Num times}} + 1$$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form? Try unfolding?

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

What's the relationship?

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form? Try unfolding?

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

What's the relationship? $n \approx 2^{t+1}$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form? Try unfolding?

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

What's the relationship? $n \approx 2^{t+1}$

Solve for t:

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form? Try unfolding?

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

What's the relationship? $n \approx 2^{t+1}$

$$n \approx 2^{t+1}$$

Solve for t:

$$t \approx \log(n) - 1$$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form? Try unfolding?

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

What's the relationship? $n \approx 2^{t+1}$

$$n \approx 2^{t+1}$$

Solve for *t*:

$$t \approx \log(n) - 1$$

Final model:

$$T(n) \approx c(\log(n) - 1) + 1$$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form? Try unfolding?

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

What's the relationship? $n \approx 2^{t+1}$

$$n \approx 2^{t+1}$$

Solve for *t*:

$$t \approx \log(n) - 1$$

Final model:

$$T(n) \approx c(\log(n) - 1) + 1$$

Our answer:
$$T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T\left(\frac{n}{2}\right) & \text{Otherwise} \end{cases}$$

Question: how do we find a closed form? Try unfolding?

$$T(n) = c + (c + (c + \ldots + (c+1))) = \underbrace{c + c + \ldots + c}_{t = \text{Num times}} + 1$$

What's the relationship? $n \approx 2^{t+1}$

$$n \approx 2^{t+1}$$

Solve for t:

$$t \approx \log(n) - 1$$

Final model:

$$T(n) \approx c(\log(n) - 1) + 1$$

So, we conclude:

$$T(n) \in \Theta(\log(n))$$

SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation	Description of algorithm	$Big\text{-}\Theta \ bound$
get put	Use binary search.	$\Theta\left(\log(n)\right)$
remove		

containsKey

SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation	Description of algorithm	$Big\text{-}\Theta \ bound$
get	Use binary search.	$\Theta\left(\log(n)\right)$
put	Use binary search to find key. If it doesn't exist, insert into array.	$\Theta\left(n\right)$
remove	Use binary search to find key. Once found, remove it and shift over remaining elements.	$\Theta\left(n\right)$
containsKey	Use binary search.	$\Theta\left(\log(n)\right)$