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Warmup questions

Warmup: True or false:

I 5n + 3 ∈ O (n)

True

I n ∈ O (5n + 3)

True

I 5n + 3 = O (n)

True (by convention)

I O (5n + 3) = O (n)

True

I O
(
n2
)
= O (n)

False

I n2 ∈ O (1)

False

I n2 ∈ O (n)

False

I n2 ∈ O
(
n2
)

True

I n2 ∈ O
(
n3
)

True

I n2 ∈ O
(
n100

)

True
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Definition: Dominated by

Definition: Dominated by
A function f (n) is dominated by g(n) when...

I There exists two constants c > 0 and n0 > 0...
I Such that for all values of n ≥ n0...
I f (n) ≤ c · g(n) is true

Definition: Big-O
O (f (n)) is the “family” or “set” of all functions that are
dominated by f (n)
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Definitions: Dominates

f (n) ∈ O (g(n)) is like saying “f (n) is less then or equal to g(n)”.

Is there a way to say “greater then or equal to”?

Yes!

Definition: Dominates
We say f (n) dominates g(n) when:

I There exists two constants c > 0 and n0 > 0...
I Such that for all values of n ≥ n0...
I f (n) ≥ c · g(n) is true

Definition: Big-Ω
Ω(f (n)) is the family of all functions that dominates f (n).
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A few more questions...

True or false?
I 4n2 ∈ Ω(1)

True

I 4n2 ∈ Ω(n)

True

I 4n2 ∈ Ω
(
n2
)

True

I 4n2 ∈ Ω
(
n3
)

False

I 4n2 ∈ Ω
(
n4
)

False

I 4n2 ∈ O (1)

False

I 4n2 ∈ O (n)

False

I 4n2 ∈ O
(
n2
)

True

I 4n2 ∈ O
(
n3
)

True

I 4n2 ∈ O
(
n4
)

True
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Definition: Big-Θ

Definition: Big-Θ
We say f (n) ∈ Θ(g(n)) when both:

I f (n) ∈ O (g(n)) and...
I f (n) ∈ Ω(g(n))

...are true.

Note: in industry, it’s common for many people to ask for the
big-O when they really want the big-Θ!
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Modeling complex loops

Exercise: construct a mathematical function modeling the
worst-case runtime in terms of n.

Assume the println takes c time.

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

System.out.println("Foo!");

}

}

A handwavy answer: T (n) = 0c + 1c + 2c + 3c + . . .+ (n − 1)c

A not-handwavy answer: T (n) =
n−1∑
i=0

i−1∑
j=0

c
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Simplifying summations

Strategies:

I Wolfram Alpha
I Apply summation identities

T (n) =
n−1∑
i=0

i−1∑
j=0

c =

n−1∑
i=0

ci Summation of a constant

= c
n−1∑
i=0

i Factoring out a constant

= c n(n − 1)

2
Gauss’s identity

So, T (n) =
n−1∑
i=0

i−1∑
j=0

c =
c
2

n2 − c
2

n︸ ︷︷ ︸
closed form
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Simplifying summations

Exercise: model the worst-case runtime using summations, find a
closed form, find the big-Theta bound.

public void mystery2(int[] arr) {

for (int i = 5; i < arr.length; i++) {

int c = 0;

for (int j = i; j < arr.length; j++) {

c += arr[j];

}

System.out.println(c);

}

}

Model: Let n be the array length. Then, T (n) =
n−1∑
i=5

n−1∑
j=i

1
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Simplifying summations continued

n−1∑
i=5

n−1∑
j=i

1 =

n−1∑
i=5

n−1∑
j=0

1−
i−1∑
j=0

1

 Normalize lower bound

=
n−1∑
i=5

(n − i) Apply identity

=
n−1∑
i=0

(n − i)−
5−1∑
i=0

(n − i) Normalize lower bound

=
n−1∑
i=0

n −
n−1∑
i=0

i −
5−1∑
i=0

n +
5−1∑
i=0

i Split summations

= n2 − n(n − 1)

2
− 5n + 10 Apply identities
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Handling recursive functions

Exercise: model the worst-case runtime of this method.
public static int sum(int[] arr) {

return sumHelper(0, int[] arr);

}

private static int sumHelper(int curr, int[] arr) {

if (curr == arr.length) {

return 0;

} else {

return arr[curr] + sumHelper(curr + 1);

}

}

Answer: create a recurrence.

T (n) =

c1 when n = 0
c2 + T (n − 1) otherwise

Note: here, n is the number of items we need to visit, and c1 and
c2 are some constants.
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Simplifying recurrences

How do we find a closed form for:

T (n) =

c1 when n = 0
c2 + T (n − 1) otherwise

One method: the “unfolding” method.

Observation: when n = 4, T (n) = c2 + (c2 + (c2 + (c2 + c1)))

We repeat c2 four times, so T (4) = 4c2 + c1.

After generalizing: T (n) = c1 +
n−1∑
i=0

c2 = c1 + c2n.
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The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is
unique (no duplicate keys allowed); the values can be arbitrary. A
client can provide a key to look up the corresponding value.

Supported operations:

I get: Retrieves the value corresponding to the given key
I put: Updates the value corresponding to the given key
I remove: Removes the given key (and corresponding value)
I containsKey: Returns whether dictionary contains given key
I size: Returns the number of key-value pairs

Alternative names: map, lookup table

13
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The Set ADT

A set is a collection of items. A set cannot contain any duplicate
items: each item must be unique.

Supported operations:

I add: Adds the given item to the set
I remove: Removes the given item to the set
I contains: Returns ’true’ if the set contains this item
I size: Returns the number of items in the set

Two questions:

1. Do sets (and dictionaries) need to ’order’ items in some way?
2. We can implement a set on top of some dictionary: how?
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Algorithm design practice: ArrayDictionary

Ex: consider your ArrayDictionary implementation; fill in table:

Operation Description of algorithm Big-Θ bound

get

Scan through the internal array, see if
the key exists. Return value if it does.

Θ(n)

put

Scan through the internal array, replace
the value if we find the key-value pair.
Otherwise, add the new pair at the end.

Θ(n)

remove

Scan through the internal array and find
the key-value pair. Remove it, and shift
over the remaining elements.

Θ(n)

containsKey

Scan through the array... Θ(n)
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Idea: exploit additional property of keys

Observation: sometimes, keys are comparable and sortable.

Idea: Can we exploit the “sortability” of these keys?
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Design practice: implementing get

Suppose we add the following invariant to ArrayDictionary:

SortedArrayDictionary invariant
The internal array, at all times, must remain sorted.

How do you implement get? What’s the big-Θ bound?

17



The binary search algorithm

Core algorithm (in pseudocode):
public V get(K key):

return search(key, 0, this.size)

private K search(K key, int lowIndex, int highIndex):

if lowIndex > highIndex:

key not found, throw an exception

else:

middleIndex = average of lowIndex and highIndex

pair = this.array[middleIndex]

if pair.key == key:

return pair.value

else if pair.key < key:

return search(key, lowIndex, middleIndex)

else if pair.key > key:

return search(key, middleIndex + 1, highIndex)

Answer: T (n) ≈

1 When n ≤ 0

c + T
(n
2

)
Otherwise

18
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return search(key, lowIndex, middleIndex)

else if pair.key > key:

return search(key, middleIndex + 1, highIndex)

Ex: model the worst-case runtime. Assume the time needed to
compare two keys takes c time. Let n = highIndex − lowIndex.

Answer: T (n) ≈

1 When n ≤ 0

c + T
(n
2

)
Otherwise
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Finding a closed form

Our answer: T (n) ≈

1 When n ≤ 0

c + T
(n
2

)
Otherwise

Question: how do we find a closed form?

Try unfolding?

T (n) = c + (c + (c + . . .+ (c + 1))) = c + c + . . .+ c︸ ︷︷ ︸
t=Num times

+1

n 0 2 4 6 8 10 12 16 ... 32 ... 64

t

0 2 3 3 4 4 4 5

...

6

...

7

What’s the relationship?

n ≈ 2t+1

Solve for t:

t ≈ log(n)− 1

Final model:

T (n) ≈ c(log(n)− 1) + 1

So, we conclude: T (n) ∈ Θ(log(n))
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SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation Description of algorithm Big-Θ bound

get Use binary search. Θ(log(n))
put

Use binary search to find key.
If it doesn’t exist, insert into array.

Θ(n)

remove

Use binary search to find key.
Once found, remove it and shift over
remaining elements.

Θ(n)

containsKey

Use binary search. Θ(log(n))

20



SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation Description of algorithm Big-Θ bound

get Use binary search. Θ(log(n))
put Use binary search to find key.

If it doesn’t exist, insert into array.
Θ(n)

remove Use binary search to find key.
Once found, remove it and shift over
remaining elements.

Θ(n)

containsKey Use binary search. Θ(log(n))

20


