CSE 373: Asymptotic Analysis, BSTs

Michael Lee
Friday, Jan 12, 2018

Warmup questions

Warmup: True or false:

Warmup questions

Warmup: True or false:

- $5 n+3 \in \mathcal{O}(n)$
- $n \in \mathcal{O}(5 n+3)$
- $5 n+3=\mathcal{O}(n)$
- $\mathcal{O}(5 n+3)=\mathcal{O}(n)$
- $\mathcal{O}\left(n^{2}\right)=\mathcal{O}(n)$
- $n^{2} \in \mathcal{O}(1)$
- $n^{2} \in \mathcal{O}(n)$
- $n^{2} \in \mathcal{O}\left(n^{2}\right)$
- $n^{2} \in \mathcal{O}\left(n^{3}\right)$
- $n^{2} \in \mathcal{O}\left(n^{100}\right)$

True
True
True (by convention)
True
False
False
False
True
True
True

Definition: Dominated by

Definition: Dominated by

A function $f(n)$ is dominated by $g(n)$ when...

- There exists two constants $c>0$ and $n_{0}>0 \ldots$
- Such that for all values of $n \geq n_{0} \ldots$
- $f(n) \leq c \cdot g(n)$ is true

Definition: Big-O

$\mathcal{O}(f(n))$ is the "family" or "set" of all functions that are dominated by $f(n)$

Definitions: Dominates

$f(n) \in \mathcal{O}(g(n))$ is like saying " $f(n)$ is less then or equal to $g(n)$ ".
Is there a way to say "greater then or equal to"?

Definitions: Dominates

$f(n) \in \mathcal{O}(g(n))$ is like saying " $f(n)$ is less then or equal to $g(n)$ ". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say $f(n)$ dominates $g(n)$ when:

- There exists two constants $c>0$ and $n_{0}>0 \ldots$
- Such that for all values of $n \geq n_{0} \ldots$
- $f(n) \geq c \cdot g(n)$ is true

Definitions: Dominates

$f(n) \in \mathcal{O}(g(n))$ is like saying " $f(n)$ is less then or equal to $g(n)$ ". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say $f(n)$ dominates $g(n)$ when:

- There exists two constants $c>0$ and $n_{0}>0 \ldots$
- Such that for all values of $n \geq n_{0} \ldots$
- $f(n) \geq c \cdot g(n)$ is true

Definition: Big- Ω

$\Omega(f(n))$ is the family of all functions that dominates $f(n)$.

A few more questions...

True or false?

A few more questions...

True or false?

- $4 n^{2} \in \Omega(1) \quad$ True
- $4 n^{2} \in \Omega(n) \quad$ True
- $4 n^{2} \in \Omega\left(n^{2}\right) \quad$ True
- $4 n^{2} \in \Omega\left(n^{3}\right) \quad$ False
- $4 n^{2} \in \Omega\left(n^{4}\right) \quad$ False
- $4 n^{2} \in \mathcal{O}(1) \quad$ False
- $4 n^{2} \in \mathcal{O}(n) \quad$ False
- $4 n^{2} \in \mathcal{O}\left(n^{2}\right) \quad$ True
- $4 n^{2} \in \mathcal{O}\left(n^{3}\right) \quad$ True
- $4 n^{2} \in \mathcal{O}\left(n^{4}\right) \quad$ True

Definition: Big- Θ

Definition: Big- Θ
We say $f(n) \in \hat{(n)}(\underline{g}(n))$ when both:

- $f(n) \in \mathcal{O}(g(n))$ and
$f(n) \in \Omega(g(n))$
...are true.

Definition: Big- Θ

Definition: Big- Θ

We say $f(n) \in \Theta(g(n))$ when both:

- $f(n) \in \mathcal{O}(g(n))$ and...
- $f(n) \in \Omega(g(n))$
...are true.

Note: in industry, it's common for many people to ask for the big- \mathcal{O} when they really want the big- Θ !

Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of n.

Assume the print ln takes c time.

```
for (int i = 0; i < n; i++) {
    for (int j=0;j;ijjj+) { Oc
        System.out.println("Foo!");
    }
                    (n-1)C
}
```


Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of n.

Assume the println takes c time.

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("Foo!");
    }
}
```

A handwavy answer: $T(n)=0 c+1 c+2 c+3 c+\ldots+(n-1) c$

Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of n.

Assume the print ln takes c time.

$$
\rightarrow i-1 \quad j=0
$$

```
for (int i = 0; i < n; i++) {
    for (int j=0; j<< i; j++) {
        System.out.println("Foo!");
    }
}
```

A handwavy answer: $T(n)=0 c+1 c+2 c+3 c+\ldots+(n-1) c$
A not-handwavy answer: $T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c$

Simplifying summations

Strategies:

Simplifying summations

Strategies:

- Wolfram Alpha

Simplifying summations

Strategies:

- Wolfram Alpha
- Apply summation identities

Simplifying summations

Strategies:

- Wolfram Alpha
- Apply summation identities

$$
T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c=
$$

Simplifying summations

Strategies:

- Wolfram Alpha
- Apply summation identities

$$
T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c=\sum_{i=0}^{n-1} c i
$$

$$
\begin{gathered}
c 0+c 1+c 2 \cdots \\
= \\
c(0+1+2+\cdots)
\end{gathered}
$$

Summation of a constant

Simplifying summations

Strategies:

- Wolfram Alpha
- Apply summation identities

$$
\begin{aligned}
T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c & =\sum_{i=0}^{n-1} c i & & \text { Summation of a constant } \\
& =c \sum_{i=0}^{n-1} i & & \text { Factoring out a constant }
\end{aligned}
$$

Simplifying summations

Strategies:

- Wolfram Alpha
- Apply summation identities

$$
\begin{aligned}
T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c & =\sum_{i=0}^{n-1} c i & & \text { Summation of a } \\
& =c \sum_{i=0}^{n-1} i & & \text { Factoring out a } \\
& =c \frac{n(n-1)}{2} & & \text { Gauss's identity }
\end{aligned}
$$

Simplifying summations

Strategies:

- Wolfram Alpha
- Apply summation identities

$$
\begin{aligned}
T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c & =\sum_{i=0}^{n-1} c i & & \text { Summation of a } \\
& =c \sum_{i=0}^{n-1} i & & \text { Factoring out a } \\
& =c \frac{n(n-1)}{2} & & \text { Gauss's identity }
\end{aligned}
$$

So, $T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c=\frac{c}{2} n^{2}-\frac{c}{2} n$

Simplifying summations

Strategies:

- Wolfram Alpha
- Apply summation identities

$$
\begin{aligned}
T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c & =\sum_{i=0}^{n-1} c i & & \text { Summation of a } \\
& =c \sum_{i=0}^{n-1} i & & \text { Factoring out a } \\
& =c \frac{n(n-1)}{2} & & \text { Gauss's identity }
\end{aligned}
$$

So, $T(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c=\underbrace{\frac{c}{2} n^{2}-\frac{c}{2} n}_{\text {closed form }}$

Simplifying summations

Exercise: model the worst-case runtime using summations, find a closed form, find the big-Theta bound.

```
public void mystery2(int[] arr) {
    for (int i = 5; i < arr.length; i++) {
        int c = 0;
        for (int j = i; j < arr.length; j++) {
            c += arr[j];
        }
        System.out.println(c);
    }
}
```


Simplifying summations

Exercise: model the worst-case runtime using summations, find a closed form, find the big-Theta bound.

```
public void mystery2(int[] arr) {
    for (int i = 5; i < arr.length; i++) {
        int c = 0;
        for (int j = i; j < arr.length; j++) {
            c += arr[j];
        }
        System.out.println(c);
    }
}
```

Model: Let n be the array length. Then, $T(n)=\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1$

Simplifying summations continued

$$
\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1=
$$

Simplifying summations continued

$$
\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1=\sum_{i=5}^{n-1}\left(\sum_{j=0}^{n-1} 1-\sum_{j=0}^{i-1} 1\right)
$$

Normalize lower bound

Simplifying summations continued

$$
\begin{aligned}
\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 & =\sum_{i=5}^{n-1}\left(\sum_{j=0}^{n-1} 1-\sum_{j=0}^{i-1} 1\right) \\
& =\sum_{i=5}^{n-1}(n-i)
\end{aligned}
$$

Normalize lower bound

Apply identity

Simplifying summations continued

$$
\begin{aligned}
\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 & =\sum_{i=5}^{n-1}\left(\sum_{j=0}^{n-1} 1-\sum_{j=0}^{i-1} 1\right) & & \text { Normalize lower bound } \\
& =\sum_{i=5}^{n-1}(n-i) & & \text { Apply identity } \\
& =\sum_{i=0}^{n-1}(n-i)-\sum_{i=0}^{5-1}(n-i) & & \text { Normalize lower bound }
\end{aligned}
$$

Simplifying summations continued

$$
\begin{array}{rlrl}
\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 & =\sum_{i=5}^{n-1}\left(\sum_{j=0}^{n-1} 1-\sum_{j=0}^{i-1} 1\right) & & \text { Normalize lower b } \\
& =\sum_{i=5}^{n-1}(n-i) & & \text { Apply identity } \\
& =\sum_{i=0}^{n-1}(n-i)-\sum_{i=0}^{5-1}(n-i) & \text { Normalize lower b } \\
& =\sum_{i=0}^{n-1} n-\sum_{i=0}^{n-1} i-\sum_{i=0}^{5-1} n+\sum_{i=0}^{5-1} i & \text { Split summations }
\end{array}
$$

Simplifying summations continued

$$
\begin{array}{rlrl}
\sum_{i=5}^{n-1} \sum_{j=i}^{n-1} 1 & =\sum_{i=5}^{n-1}\left(\sum_{j=0}^{n-1} 1-\sum_{j=0}^{i-1} 1\right) & & \text { Normalize lower bound } \\
& =\sum_{i=5}^{n-1}(n-i) & & \text { Apply identity } \\
& =\sum_{i=0}^{n-1}(n-i)-\sum_{i=0}^{5-1}(n-i) & \text { Normalize lower bound } \\
& =\sum_{i=0}^{n-1} n-\sum_{i=0}^{n-1} i-\sum_{i=0}^{5-1} n+\sum_{i=0}^{5-1} i & \text { Split summations } \\
& =n^{2}-\frac{n(n-1)}{2}-5 n+10 & \text { Apply identities }
\end{array}
$$

Handling recursive functions

Exercise: model the worst-case runtime of this method.

```
public static int sum(int[] arr) {
    return sumHelper(0, int[] arr);
}
private static int sumHelper(int curr, int[] arr) {
    if (curr == arr.length) {
        return 0;
    } else {
        return arr[curr] + sumHelper(curr + 1);
    }
}
```


Handling recursive functions

Exercise: model the worst-case runtime of this method.

```
public static int sum(int[] arr) {
    return sumHelper(0, int[] arr);
}
private static int sumHelper(int curr, int[] arr) {
    if (curr == arr.length) {
            return 0;
    } else {
        return arr[curr] + sumHelper(curr + 1);
    }
}
```

Answer: create a recurrence.

$$
T(n)= \begin{cases}c_{1} & \text { when } \mathrm{n}=0 \\ c_{2}+T(n-1) & \text { otherwise }\end{cases}
$$

Note: here, n is the number of items we need to visit, and c_{1} and
c_{2} are some constants.

Simplifying recurrences

How do we find a closed form for:

$$
T(n)= \begin{cases}c_{1} & \text { when } \underline{\mathrm{n}=0} \\ c_{2}+T(n-1) & \text { otherwise }\end{cases}
$$

One method: the "unfolding" method.

$$
T(4)=c_{2}+(c_{2}+\underbrace{T(3-1))}_{\left(c_{2}+T(2-1)\right)}
$$

Simplifying recurrences

How do we find a closed form for:

$$
T(n)= \begin{cases}c_{1} & \text { when } \mathrm{n}=0 \\ c_{2}+T(n-1) & \text { otherwise }\end{cases}
$$

One method: the "unfolding" method.
Observation: when $n=4, T(n)=\underbrace{c_{2}+\left(c_{2}+\left(c_{2}+\left(c_{2}\right.\right.\right.}+c_{1})))$

Simplifying recurrences

How do we find a closed form for:

$$
T(n)= \begin{cases}c_{1} & \text { when } \mathrm{n}=0 \\ c_{2}+T(n-1) & \text { otherwise }\end{cases}
$$

One method: the "unfolding" method.
Observation: when $n=4, T(n)=c_{2}+\left(c_{2}+\left(c_{2}+\left(c_{2}+c_{1}\right)\right)\right)$
We repeat c_{2} four times, so $T(4)=4 c_{2}+c_{1}$.
After generalizing: $T(n)=c_{1}+\sum_{i=0}^{n-1} c_{2} \rightarrow c_{1}+c_{2} n$.

The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value.

The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value.

Supported operations:

- get: Retrieves the value corresponding to the given key
- put: Updates the value corresponding to the given key
- remove: Removes the given key (and corresponding value)
- containsKey: Returns whether dictionary contains given key
- size: Returns the number of key-value pairs

The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value.

Supported operations:

- get: Retrieves the value corresponding to the given key
- put: Updates the value corresponding to the given key
- remove: Removes the given key (and corresponding value)
- containsKey: Returns whether dictionary contains given key
- size: Returns the number of key-value pairs

Alternative names: map, lookup table

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

Supported operations:

- add: Adds the given item to the set
- remove: Removes the given item to the set
- contains: Returns 'true' if the set contains this item
- size: Returns the number of items in the set

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

Supported operations:

- add: Adds the given item to the set
- remove: Removes the given item to the set
- contains: Returns 'true' if the set contains this item
- size: Returns the number of items in the set

Two questions:

1. Do sets (and dictionaries) need to 'order' items in some way?
2. We can implement a set on top of some dictionary: how?

Algorithm design practice: ArrayDictionary

Ex: consider your ArrayDictionary implementation; fill in table:

Algorithm design practice: ArrayDictionary

Ex: consider your ArrayDictionary implementation; fill in table:

Operation Description of algorithm

Big- Θ bound
get
put
Scan through the internal array, see if
$\Theta(n)$
the key exists. Return value if it does.
Scan through the internal array, replace
$\Theta(n)$
the value if we find the key-value pair.
Otherwise, add the new pair at the end.
remove
Scan through the internal array and find
$\Theta(n)$ the key-value pair. Remove it, and shift over the remaining elements.
containsKey Scan through the array...

Idea: exploit additional property of keys

Observation: sometimes, keys are comparable and sortable.

Idea: exploit additional property of keys

Observation: sometimes, keys are comparable and sortable.

Idea: Can we exploit the "sortability" of these keys?

Design practice: implementing get

Suppose we add the following invariant to ArrayDictionary:
SortedArrayDictionary invariant
The internal array, at all times, must remain sorted.
How do you implement get? What's the big- Θ bound?

Looks - p "m"

The binary search algorithm

```
Core algorithm (in pseudocode):
public V get(K key):
    return search(key, 0, this.size)
                n}=\mathrm{ nigh-low
private K search(K key, int lowIndex, int highIndex):
        if lowIndex > highInvex:
    else:.
        pair = this.array[middleIndex]
            if [air.key == kov,
            else if)pair.key < 卜ey:
```



```
\[
T(n)=\{1 \quad \text { when } n=0
\]
\[
\left\{c+T\left(\frac{n}{2}\right)\right. \text { otherwise }
\]
```


The binary search algorithm

Core algorithm (in pseudocode):

```
    public V get(K key):
```

 return search(key, 0, this.size)
 private K search(K key, int lowIndex, int highIndex):
 if lowIndex > highIndex:
 key not found, throw an exception
 else:
 middleIndex \(=\) average of lowIndex and highIndex
 pair = this.array[middleIndex]
 if pair.key == key:
 return pair.value
 else if pair.key < key:
 return search(key, lowIndex, middleIndex)
 else if pair.key > key:
 return search(key, middleIndex + 1, highIndex)
 Ex: model the worst-case runtime. Assume the time needed to compare two keys takes c time. Let $n=$???

The binary search algorithm

Core algorithm (in pseudocode):

```
    public V get(K key):
```

 return search(key, 0, this.size)
 private \(K\) search(\(K\) key, int lowIndex, int highIndex):
 if lowIndex > highIndex:
 key not found, throw an exception
 else:
 middleIndex = average of lowIndex and highIndex
 pair = this.array[middleIndex]
 if pair.key == key:
 return pair.value
 else if pair.key < key:
 return search(key, lowIndex, middleIndex)
 else if pair.key > key:
 return search(key, middleIndex + 1, highIndex)
 Ex: model the worst-case runtime. Assume the time needed to compare two keys takes c time. Let $n=$ highIndex - lowIndex.

The binary search algorithm

Core algorithm (in pseudocode):

```
public V get(K key):
    return search(key, 0, this.size)
private K search(K key, int lowIndex, int highIndex):
    if lowIndex > highIndex:
        key not found, throw an exception
    else:
        middleIndex = average of lowIndex and highIndex
        pair = this.array[middleIndex]
        if pair.key == key:
            return pair.value
        else if pair.key < key:
            return search(key, lowIndex, middleIndex)
        else if pair.key > key:
            return search(key, middleIndex + 1, highIndex)
```

Answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form?

Finding a closed form
Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
\begin{aligned}
T(n) & =c+T\left(\frac{n}{2}\right) \\
& =c+\left(c+T\left(\frac{n}{n}\right)\right) \\
& =c+c+\left(c+T\left(\frac{n}{8}\right)\right)
\end{aligned}
$$

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=\underbrace{c+(c+(c+\ldots+(c+1)))}_{t=\text { Num times }}=\underbrace{c+1}_{t+c+\ldots+c}
$$

Finding a closed form
Our answer: $T\left(\begin{array}{ll}\mathbf{O} \\ n\end{array} \approx \begin{cases}\frac{1}{c} & \text { When } n \leq 0 \\ \hline+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}\right.$
Question: how do we find a closed form? Try unfolding?

$$
\begin{aligned}
& T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { mum times }}+1
\end{aligned}
$$

$$
\begin{aligned}
& n \approx 2^{t} \quad t \approx \log (n) \\
& \text { 1 } T(n) \approx \log (n) c+1
\end{aligned}
$$

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

What's the relationship?

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

What's the relationship? $n \approx 2^{t+1}$

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

What's the relationship? $n \approx 2^{t+1}$
Solve for t :

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

What's the relationship? $n \approx 2^{t+1}$
Solve for t :

$$
t \approx \log (n)-1
$$

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

What's the relationship? $n \approx 2^{t+1}$
Solve for t :

$$
t \approx \log (n)-1
$$

Final model:

$$
T(n) \approx c(\log (n)-1)+1
$$

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

What's the relationship? $n \approx 2^{t+1}$
Solve for t :

$$
t \approx \log (n)-1
$$

Final model:

$$
T(n) \approx c(\log (n)-1)+1
$$

Finding a closed form

Our answer: $T(n) \approx \begin{cases}1 & \text { When } n \leq 0 \\ c+T\left(\frac{n}{2}\right) & \text { Otherwise }\end{cases}$
Question: how do we find a closed form? Try unfolding?

$$
T(n)=c+(c+(c+\ldots+(c+1)))=\underbrace{c+c+\ldots+c}_{t=\text { Num times }}+1
$$

n	0	2	4	6	8	10	12	16	\ldots	32	\ldots	64
t	0	2	3	3	4	4	4	5	\ldots	6	\ldots	7

What's the relationship? $n \approx 2^{t+1}$
Solve for t :

$$
t \approx \log (n)-1
$$

Final model:

$$
T(n) \approx c(\log (n)-1)+1
$$

So, we conclude:

$$
T(n) \in \Theta(\log (n))
$$

SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation	Description of algorithm	Big- Θ bound
get	Use binary search.	$\Theta(\log (n))$
put		

remove
containsKey

SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation	Description of algorithm	Big- Θ bound
get	Use binary search.	$\Theta(\log (n))$
put	Use binary search to find key. If it doesn't exist, insert into array.	$\Theta(n)$
remove	Use binary search to find key.	$\Theta(n)$
Once found, remove it and shift over		
remaining elements.	$\Theta(\log (n))$	

Idea: Moving away from lists

Observation: Changing our array is still difficult

Idea: Moving away from lists

Observation: Changing our array is still difficult

Idea: Use a different data structure optimized for both searching and insertion?

Idea: Moving away from lists

Observation: Changing our array is still difficult

Idea: Use a different data structure optimized for both searching and insertion?

Answer: Use a Binary Search Tree (BST)

