CSE 373: Asymptotic Analysis, BSTs

Michael Lee

Friday, Jan 12, 2018

Warmup questions

Warmup: True or false:

- 5n+3∈ O(n)
- n ∈ O (5n + 3)
- ▶ 5n + 3 = O(n)
- ▶ O(5n + 3) = O(n)
- $\triangleright \mathcal{O}(n^2) = \mathcal{O}(n)$
- \triangleright $n^2 \in \mathcal{O}(1)$
- ▶ $n^2 \in \mathcal{O}(n)$ $ightharpoonup n^2 \in \mathcal{O}(n^2)$
- $ightharpoonup n^2 \in \mathcal{O}(n^3)$ ▶ $n^2 \in \mathcal{O}(n^{100})$

Definition: Dominated by

Definition: Dominated by

A function f(n) is dominated by g(n) when...

- ▶ There exists two constants c > 0 and n₀ > 0...
- Such that for all values of n ≥ n₀...
- ▶ $f(n) \le c \cdot g(n)$ is true

Definition: Big-O

O(f(n)) is the "family" or "set" of all functions that are

dominated by f(n)

Definitions: Dominates

 $f(n) \in \mathcal{O}(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say f(n) dominates g(n) when:

- ▶ There exists two constants c > 0 and n₀ > 0...
- Such that for all values of n ≥ n₀...
- ▶ $f(n) \ge c \cdot g(n)$ is true

Definition: Big-Ω

 $\Omega(f(n))$ is the family of all functions that dominates f(n).

A few more questions...

True or false?

- ▶ $4n^2 \in \Omega(1)$
- $\blacktriangleright 4n^2 \in \Omega(n)$
- $\blacktriangleright 4n^2 \in \Omega(n^2)$

- $\blacktriangleright 4n^2 \in \Omega(n^3)$
- ▶ $4n^2 \in \Omega(n^4)$
- ▶ $4n^2 \in \mathcal{O}(n^4)$
- ▶ $4n^2 \in \mathcal{O}(n^2)$ ▶ $4n^2 \in \mathcal{O}(n^3)$

▶ $4n^2 \in O(1)$

 $\blacktriangleright 4n^2 \in \mathcal{O}(n)$

Definition: Big-⊖

Definition: Big-⊖

We say $f(n) \in \Theta(g(n))$ when both:

▶ $f(n) \in O(g(n))$ and...

► $f(n) \in \Omega(g(n))$

are true

Note: in industry, it's common for many people to ask for the big-O when they really want the big- Θ !

Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of n.

Assume the println takes c time

A handwavy answer:
$$T(\mathbf{n}) = 0c + 1c + 2c + 3c + \ldots + (\mathbf{n} - 1)c$$

A not-handwavy answer: $T(n) = \sum_{i=1}^{n-1} \sum_{j=1}^{i-1} c_j$

Simplifying summations

Strategies:

▶ Wolfram Alpha

▶ Apply summation identities
$$T(n) = \sum_{i=0}^{n-1} \sum_{i=0}^{i-1} c_i = \sum_{i=0}^{n-1} c_i$$
 Summation of a constant

$$= c \sum_{i=0}^{n-1} i \qquad \text{Factoring out a constant}$$

$$= c \frac{n(n-1)}{2} \qquad \text{Gauss's identity}$$

So,
$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \underbrace{\frac{c}{2} n^2 - \frac{c}{2} n}_{i=0}$$

Simplifying summations

Exercise: model the worst-case runtime using summations, find a closed form, find the big-Theta bound.

Model: Let n be the array length. Then, $T(n) = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} 1$

Simplifying summations continued

$$\sum_{i=5}^{n-1}\sum_{j=1}^{n-1}1=\sum_{i=5}^{n-1}\left(\sum_{j=0}^{n-1}1-\sum_{j=0}^{i-1}1\right) \text{Normalize lower bound}$$

$$=\sum_{i=5}^{n-1}(n-i) \qquad \qquad \text{Apply identity}$$

$$=\sum_{i=0}^{n-1}(n-i)-\sum_{i=0}^{5-1}(n-i) \qquad \text{Normalize lower bound}$$

$$=\sum_{i=0}^{n-1}\sum_{n-1}^{n-1}\sum_{i=1}^{5-1}\sum_{j=1}^{5-1}\sum_{i=1}^{5-1}\sum_{j=1}^{5-1}\sum_{i=1}^{5-1}\sum_{j=1}^{5-1}\sum_{j=1}^{5-1}\sum_{i=1}^{5-1}\sum_{j=1}^{5-1}\sum_{j=1}^{5-1}\sum_{j=1}^{5-1}\sum_{j=1}^{5-1}\sum_{i=1}^{5-1}\sum_{j=1}$$

$$= \sum_{i=0}^{\overline{n-1}} n - \sum_{i=0}^{\overline{n-1}} i - \sum_{i=0}^{5-1} n + \sum_{i=0}^{5-1} i$$
 Split summations

Handling recursive functions

Exercise: model the worst-case runtime of this method. public static int sum(int[] arr) (

$$T(n) = \begin{cases} c_1 & \text{when } n = 0 \\ c_2 + T(n-1) & \text{otherwise} \end{cases}$$

Note: here, n is the number of items we need to visit, and c_1 and c) are some constants.

Simplifying recurrences

How do we find a closed form for:

$$T(n) = egin{cases} c_1 & \text{when } n = 0 \\ c_2 + T(n-1) & \text{otherwise} \end{cases}$$

One method: the "unfolding" method.

Observation: when n = 4, $T(n) = c_2 + (c_2 + (c_2 + (c_2 + c_1)))$

We repeat c_2 four times, so $T(4) = 4c_2 + c_1$.

After generalizing:
$$T(n) = c_1 + \sum_{i=0}^{n-1} c_2 = c_1 + c_2 n$$
.

The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value. Supported operations:

▶ get: Retrieves the value corresponding to the given key

- ▶ put: Updates the value corresponding to the given key
- put: Opdates the value corresponding to the given key
- remove: Removes the given key (and corresponding value)
 containsKey: Returns whether dictionary contains given key
- ► size: Returns the number of key-value pairs

Alternative names: map, lookup table

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

Supported operations:

- ▶ add: Adds the given item to the set
- ► remove: Removes the given item to the set

 ► contains: Returns 'true' if the set contains this item
- ▶ size: Returns the number of items in the set

Two questions:

- 1. Do sets (and dictionaries) need to 'order' items in some way?
- 2. We can implement a set on top of some dictionary: how?

Algorithm design practice: ArrayDictionary

Ex: consider your ArrayDictionary implementation; fill in table:

Operation	Description of algorithm	Big-⊖ bound
get	Scan through the internal array, see if the key exists. Return value if it does.	$\Theta\left(n\right)$
put	Scan through the internal array, replace the value if we find the key-value pair.	$\Theta\left(n\right)$
remove	Otherwise, add the new pair at the end. Scan through the internal array and find the key-value pair. Remove it, and shift over the remaining elements.	$\Theta\left(n\right)$
containeVou	Constitution of the constitution	Θ(=)

Idea: exploit additional property of keys

Observation: sometimes, keys are comparable and sortable.

Idea: Can we exploit the "sortability" of these keys?

Design practice: implementing get

Suppose we add the following invariant to ArrayDictionary:

SortedArrayDictionary invariant

The internal array, at all times, must remain sorted.

How do you implement get? What's the big-⊖ bound?

The binary search algorithm

Core algorithm (in pseudocode):

public V get(K key):
 return search(key, 0, this.size)

private K search/K key, int lowIndex, int highIndex):

if lowIndex > highIndex: key not found, throw an exception

else: middleIndex - average of lowIndex and highIndex

pair = this.array[middleIndex]

if pair.key == key:

return pair.value else if pair.key < key: return search(key, lowIndex, middleIndex) else if pair.key > key: return search(key, middleIndex + 1, highIndex)

Ex: model the worst-case runtime. Assume the time needed to

compare two keys takes c time. Let n = highlndex – lowlndex.

18

Finding a closed form

Our answer: $T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + T(\frac{n}{2}) & \text{Otherwise} \end{cases}$

Question: how do we find a closed form? Try unfolding?

 $T(\textit{n}) = \textit{c} + (\textit{c} + (\textit{c} + \ldots + (\textit{c} + 1))) = \underbrace{\textit{c} + \textit{c} + \ldots + \textit{c}}_\textit{t=Num times} + 1$

n 0 2 4 6 8 10 12 16 ... 32 ... 64

t 0 2 3 3 4 4 4 5 ... 6 ... 7 What's the relationship? $n \approx 2^{t+1}$

Solve for t: $t \approx \log(n) - 1$

Final model: $T(n) \approx c(\log(n) - 1) + 1$

So, we conclude: $T(n) \in \Theta(\log(n))$ SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation	Description of algorithm	Big-⊖ bound
get	Use binary search.	$\Theta(\log(n))$
put	Use binary search to find key. If it doesn't exist, insert into array.	$\Theta\left(n\right)$
remove	Use binary search to find key. Once found, remove it and shift over remaining elements.	$\Theta\left(n\right)$
containsKey	Use binary search.	$\Theta(\log(n))$

