CSE 373: Asymptotic Analysis

Michael Lee

Wednesday, Jan 10, 2018

Warmup

Warmup: construct a *mathematical function* modeling the worst-case runtime of this method. Your model should be written in terms of q, the provided input integer.

Assume each println takes some constant c time to run.

```
public void mystery(int q) {
    for (int i = 0; i < q; i++) {
        for (int j = 0; j < q * q; j++) {
            System.out.println("Hello");
        }
    for (int j = 0; j < 10; j++) {
            System.out.println("World");
        }
    }
}</pre>
```

Warmup

Warmup: construct a *mathematical function* modeling the worst-case runtime of this method. Your model should be written in terms of q, the provided input integer.

Assume each println takes some constant c time to run.

```
public void mystery(int q) {
    for (int i = 0; i < q; i++) {
        for (int j = 0; j < q * q; j++) {
            System.out.println("Hello");
        }
    for (int j = 0; j < 10; j++) {
            System.out.println("World");
        }
    }
}</pre>
```

Answer: $T(q) = q(cq^2 + 10c) = cq^3 + 10cq$

Last time

Two step process:

- 1. Model what we care about as a mathematical function
- 2. Analyze that function using asymptotic analysis

Last time

Two step process:

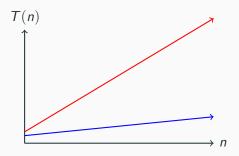
- 1. Model what we care about as a mathematical function
- Analyze that function using asymptotic analysis Specifically: have a way to compare two functions

Last time

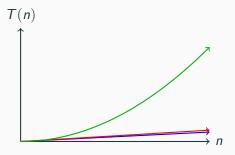
Two step process:

- 1. Model what we care about as a mathematical function
- Analyze that function using asymptotic analysis
 Specifically: have a way to compare two functions
 Even more specifically: define a "less then or equal to" operator for functions

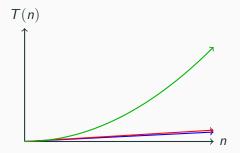
Question: Should we treat these two functions the same?



What about now?

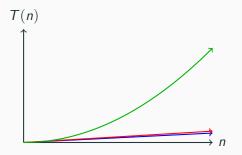


What about now?



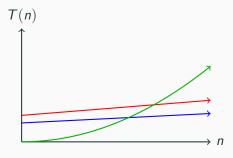
Intuition: our quadratic function is dominating the linear ones

What about now?

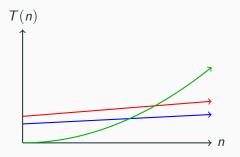


Intuition: our quadratic function is **dominating** the linear ones Intuition: our linear functions (eventually) look the same

Let's zoom in...



Let's zoom in...



Intuition: quadratic function eventually dominates the linear ones

Our goal:

▶ We want a way to say n^2 eventually dominates n

Our goal:

- ▶ We want a way to say n^2 eventually dominates n
- ► We want a way to treat *n* and 4*n* the same way Intuition:
 - ► Model made simplifying assumptions about constant factors
 - ► Can usually improve constant-factor differences by being clever

Our goal:

- ▶ We want a way to say n^2 eventually dominates n
- ► We want a way to treat *n* and 4*n* the same way Intuition:
 - ► Model made simplifying assumptions about constant factors
 - ► Can usually improve constant-factor differences by being clever
- ▶ We want a way to do this rigorously!

Function comparison: exercise

True or false?

- ls n "less then or equal to" 5n + 3?
- ls 5n + 3 "less then or equal to" n?
- ls 5n + 3 "less then or equal to" 1?
- ls 5n + 3 "less then or equal to" n^2 ?
- ▶ Is $n^2 + 3n + 2$ "less then or equal to" n^3 ?
- ls n^3 "less then or equal to" $n^2 + 3n + 2$?

Function comparison: exercise

True or false?

	ls n	"less then or equal to" $5n + 3$?	True
•	Is $5n + 3$	"less then or equal to" n ?	True
•	Is $5n + 3$	"less then or equal to" 1?	False
•	Is $5n + 3$	"less then or equal to" n^2 ?	True
•	Is $n^2 + 3n + 2$	"less then or equal to" n^3 ?	True
	Is n^3	"less then or equal to" $n^2 + 3n + 23$?False

Our goal:

- ▶ We want a way to say n^2 eventually dominates n
- ightharpoonup We want a way to treat n and 4n the same way

Idea 1

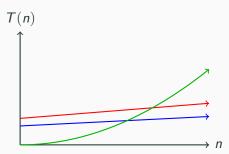
A function f(n) is "less then or equal to" g(n) when $f(n) \leq g(n)$ is true for all values of $n \geq 0$.

Does this work?

Idea 1

A function f(n) is "less then or equal to" g(n) when $f(n) \leq g(n)$ is true for all values of $n \geq 0$.

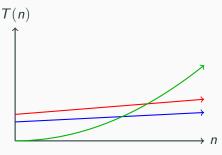
Does this work? Remember this?



Idea 1

A function f(n) is "less then or equal to" g(n) when $f(n) \le g(n)$ is true for all values of $n \ge 0$.

Does this work? Remember this?



Problem: incorrectly handles the quadratic function!

Idea 2

A function f(n) is "less then or equal to" g(n) when $f(n) \leq g(n)$ is true for all values of $n \geq n_0$.

...where $n_0 > 0$ is some constant value.

Does it work now?

Idea 2

A function f(n) is "less then or equal to" g(n) when $f(n) \leq g(n)$ is true for all values of $n \geq n_0$.

...where $n_0 > 0$ is some constant value.

Does it work now?

We previously said we want to treat n and 4n as being the "same". Do we?

Idea 2

A function f(n) is "less then or equal to" g(n) when $f(n) \leq g(n)$ is true for all values of $n \geq n_0$.

...where $n_0 > 0$ is some constant value.

Does it work now?

We previously said we want to treat n and 4n as being the "same". Do we?

Problem: No, we don't!

Idea 3

A function f(n) is "less then or equal to" g(n) when $f(n) \le c \cdot g(n)$ is true for all values of $n \ge n_0$.

...where $n_0 > 0$ is some constant value.

...where c > 0 is some constant value.

Does it work now?

Idea 3

A function f(n) is "less then or equal to" g(n) when $f(n) \le c \cdot g(n)$ is true for all values of $n \ge n_0$.

...where $n_0 > 0$ is some constant value.

...where c > 0 is some constant value.

Does it work now?

Yes!

Definition: Dominated by

A function f(n) is **dominated by** g(n) when...

Definition: Dominated by

A function f(n) is **dominated by** g(n) when...

▶ There exists two constants c > 0 and $n_0 > 0$...

Definition: Dominated by

A function f(n) is **dominated by** g(n) when...

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...

Definition: Dominated by

A function f(n) is **dominated by** g(n) when...

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...
- ▶ $f(n) \le c \cdot g(n)$ is true

Definition: Dominated by

A function f(n) is **dominated by** g(n) when...

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...
- ▶ $f(n) \le c \cdot g(n)$ is true

The formal definition (not necessary to know this):

Formal definition: Dominated by

A function f(n) is **dominated by** g(n) when

$$\exists (c > 0, n_0 > 0). \, \forall (n \ge n_0). \, (f(n) \le cg(n))$$

...is true.

Demonstrate that $5n^2 + 3n + 6$ is dominated by n^3 by finding a c and n_0 that satisfy the above definition.

Demonstrate that $5n^2 + 3n + 6$ is dominated by n^3 by finding a c and n_0 that satisfy the above definition.

Idea: pick c = 10000 and $n_0 = 10000$. (It probably works $^-_(^{\prime})_{-}/^-$)

Demonstrate that $5n^2 + 3n + 6$ is dominated by n^3 by finding a c and n_0 that satisfy the above definition.

Idea: pick c=10000 and $n_0=10000$. (It probably works $^-_(^{\prime\prime})_-/^-$)

Better idea: show that $5n^2 + 3n + 6$ is dominated by an easier function to analyze. E.g. note that:

$$5n^2 + 3n + 6 \le 5n^2 + 3n^2 + 6n^2$$
 for all $n \ge 1$
$$= 14n^2$$
$$\le 14n^3$$

Demonstrate that $5n^2 + 3n + 6$ is dominated by n^3 by finding a c and n_0 that satisfy the above definition.

Idea: pick c = 10000 and $n_0 = 10000$. (It probably works $^{_(")}_{-}$)

Better idea: show that $5n^2 + 3n + 6$ is dominated by an easier function to analyze. E.g. note that:

$$5n^2 + 3n + 6 \le 5n^2 + 3n^2 + 6n^2$$
 for all $n \ge 1$
= $14n^2$
 $\le 14n^3$

So, what value of c makes $14n^3 \le cn^3$ true (when $n \ge 1$)?

One possible choice: $n_0 = 1$ and c = 14.

Demonstrate that $5n^2 + 3n + 6$ is dominated by n^3 by finding a c and n_0 that satisfy the above definition.

Idea: pick c = 10000 and $n_0 = 10000$. (It probably works $^-$ _('')_/-)

Better idea: show that $5n^2 + 3n + 6$ is dominated by an easier function to analyze. E.g. note that:

$$5n^2 + 3n + 6 \le 5n^2 + 3n^2 + 6n^2$$
 for all $n \ge 1$
$$= 14n^2$$
$$\le 14n^3$$

So, what value of c makes $14n^3 \le cn^3$ true (when $n \ge 1$)?

One possible choice: $n_0 = 1$ and c = 14.

So, since we know $5n^2+3n+6\leq 14n^3$ for $n\geq n_0$ and also know $14n^3\leq cn^3$, we conclude $5n^2+3n+6\leq cn^3$.

Exercise

Demonstrate that $2n^3 - 3 + 9n^2 + \sqrt{n}$ is dominated by n^3 (again by finding a c and n_0).

Exercise

Demonstrate that $2n^3 - 3 + 9n^2 + \sqrt{n}$ is dominated by n^3 (again by finding a c and n_0).

Do the same thing. Note that:

$$2n^3 - 3 + 9n^2 + \sqrt{n} \le 2n^3 + 9n^2 + n$$
 for all $n \ge 1$
 $\le 2n^3 + 9n^3 + n^3$
 $= 12n^3$

So, one possible choice of n_0 and c is $n_0 = 1$ and c = 12.

Observation:

- ightharpoonup n, 5n + 3, 100n, etc... all dominate each other
- ► These three functions are the "same"

Observation:

- ightharpoonup n, 5n + 3, 100n, etc... all dominate each other
- ► These three functions are the "same"

Idea: can we give a name to this "family" of functions?

Observation:

- ightharpoonup n, 5n + 3, 100n, etc... all dominate each other
- ► These three functions are the "same"

Idea: can we give a name to this "family" of functions?

Definition: Big- \mathcal{O}

 $\mathcal{O}\left(f(n)\right)$ is the "family" or "set" of **all** functions that are **dominated by** f(n)

Observation:

- ightharpoonup n, 5n + 3, 100n, etc... all dominate each other
- ► These three functions are the "same"

Idea: can we give a name to this "family" of functions?

Definition: Big- \mathcal{O}

 $\mathcal{O}\left(f(n)\right)$ is the "family" or "set" of **all** functions that are **dominated by** f(n)

Question: are $\mathcal{O}\left(n\right)$, $\mathcal{O}\left(5n+3\right)$, and $\mathcal{O}\left(100n\right)$ all the same thing?

Observation:

- ightharpoonup n, 5n + 3, 100n, etc... all dominate each other
- ► These three functions are the "same"

Idea: can we give a name to this "family" of functions?

Definition: Big- \mathcal{O}

 $\mathcal{O}\left(f(n)\right)$ is the "family" or "set" of **all** functions that are **dominated by** f(n)

Question: are $\mathcal{O}\left(n\right)$, $\mathcal{O}\left(5n+3\right)$, and $\mathcal{O}\left(100n\right)$ all the same thing?

Yes! By convention, we pick the "simplest" way of writing this and refer to this "family" as $\mathcal{O}(n)$.

A question: Do the following two sentences mean the same thing?

- ► f(n) is dominated by g(n)
- ▶ f(n) is contained inside O(g(n))

A question: Do the following two sentences mean the same thing?

- ► f(n) is dominated by g(n)
- ▶ f(n) is contained inside $\mathcal{O}(g(n))$

Yes!

We can write this more concisely as $f(n) \in \mathcal{O}(g(n))$.

A question: Do the following two sentences mean the same thing?

- ► f(n) is dominated by g(n)
- ▶ f(n) is contained inside $\mathcal{O}(g(n))$

Yes!

We can write this more concisely as $f(n) \in \mathcal{O}(g(n))$.

An aside: some people write this as $f(n) = \mathcal{O}(g(n))$

This is wrong (but common, so we reluctantly accept this)

A few more questions

True or false:

- $ightharpoonup 5n + 3 \in \mathcal{O}(n)$
- $ightharpoonup n \in \mathcal{O}(5n+3)$
- ► $5n + 3 = \mathcal{O}(n)$
- $\triangleright \mathcal{O}(5n+3) = \mathcal{O}(n)$
- $\triangleright \mathcal{O}(n^2) = \mathcal{O}(n)$
- $ightharpoonup n^2 \in \mathcal{O}(1)$
- $ightharpoonup n^2 \in \mathcal{O}(n)$
- $ightharpoonup n^2 \in \mathcal{O}\left(n^2\right)$
- $ightharpoonup n^2 \in \mathcal{O}\left(n^3\right)$
- $ightharpoonup n^2 \in \mathcal{O}\left(n^{100}\right)$

A few more questions

True or false:

$$ightharpoonup 5n + 3 \in \mathcal{O}(n)$$

$$ightharpoonup n \in \mathcal{O}(5n+3)$$

$$\blacktriangleright 5n + 3 = \mathcal{O}(n)$$

$$\triangleright \mathcal{O}(5n+3) = \mathcal{O}(n)$$

$$ightharpoonup n^2 \in \mathcal{O}(1)$$

$$ightharpoonup n^2 \in \mathcal{O}\left(n^2\right)$$

$$ightharpoonup n^2 \in \mathcal{O}\left(n^3\right)$$

$$ightharpoonup n^2 \in \mathcal{O}\left(n^{100}\right)$$

Definitions: Dominates

 $f(n) \in \mathcal{O}(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"?

Definitions: Dominates

 $f(n) \in \mathcal{O}(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say f(n) dominates g(n) when:

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...
- ► $f(n) \ge c \cdot g(n)$ is true

Definitions: Dominates

 $f(n) \in \mathcal{O}(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say f(n) dominates g(n) when:

- ▶ There exists two constants c > 0 and $n_0 > 0$...
- ▶ Such that for all values of $n \ge n_0$...
- ▶ $f(n) \ge c \cdot g(n)$ is true

Definition: Big- Ω

 $\Omega(f(n))$ is the family of all functions that **dominates** f(n).

A few more questions...

True or false?

$$\blacktriangleright 4n^2 \in \Omega(1)$$

$$ightharpoonup 4n^2 \in \Omega(n)$$

$$ightharpoonup 4n^2 \in \Omega\left(n^2\right)$$

$$\blacktriangleright 4n^2 \in \Omega\left(n^3\right)$$

$$ightharpoonup 4n^2 \in \Omega\left(n^4\right)$$

$$\blacktriangleright 4n^2 \in \mathcal{O}(1)$$

$$ightharpoonup 4n^2 \in \mathcal{O}(n)$$

$$ightharpoonup 4n^2 \in \mathcal{O}\left(n^2\right)$$

$$ightharpoonup 4n^2 \in \mathcal{O}\left(n^3\right)$$

$$\blacktriangleright 4n^2 \in \mathcal{O}\left(n^4\right)$$

A few more questions...

True or false?

- ► $4n^2 \in \Omega(1)$ True
- ▶ $4n^2 \in \Omega(n)$ True
- ▶ $4n^2 \in \Omega(n^2)$ True
- ▶ $4n^2 \in \Omega(n^3)$ False
- ▶ $4n^2 \in \Omega(n^4)$ False

- ▶ $4n^2 \in \mathcal{O}(1)$ False
- ▶ $4n^2 \in \mathcal{O}(n)$ False
- ▶ $4n^2 \in \mathcal{O}(n^2)$ True
- ▶ $4n^2 \in \mathcal{O}(n^3)$ True
- ▶ $4n^2 \in \mathcal{O}\left(n^4\right)$ True

Definition: Big-⊖

Definition: Big- Θ

We say $f(n) \in \Theta(g(n))$ when both:

- ▶ $f(n) \in \mathcal{O}(g(n))$ and...
- $ightharpoonup f(n) \in \Omega(g(n))$

...are true.

Definition: Big-⊖

Definition: Big- Θ

We say $f(n) \in \Theta(g(n))$ when both:

- ▶ $f(n) \in \mathcal{O}(g(n))$ and...
- $ightharpoonup f(n) \in \Omega(g(n))$

...are true.

Note: in industry, it's common for many people to ask for the big- $\mathcal O$ when they really want the big- Θ !

Takeaways

Important things to know:

lacktriangle Intuition behind the definitions of "dominated by" and big- ${\cal O}$

Takeaways

Important things to know:

- lacktriangle Intuition behind the definitions of "dominated by" and big- ${\cal O}$
- ► The precise definitions of:
 - ightharpoonup "Dominated by" and big- ${\cal O}$
 - ightharpoonup "Dominates" and big- Ω
 - ▶ Big-Θ

Takeaways

Important things to know:

- lacktriangle Intuition behind the definitions of "dominated by" and big- ${\cal O}$
- ► The precise definitions of:
 - ightharpoonup "Dominated by" and big- $\mathcal O$
 - ightharpoonup "Dominates" and big- Ω
 - ▶ Big-Θ
- ► How to demonstrate that one function is dominated by another by finding c and n_0 and applying the correct definition