CSE 373: Asymptotic Analysis

Michael Lee
Wednesday, Jan 10, 2018

Warmup

Warmup: construct a mathematical function modeling the worst-case runtime of this method. Your model should be written in terms of q, the provided input integer.

Assume each printin takes some constant c time to run.

```
public void mystery(int q) C
    for (int i = 0; i< q; it+)
        for (int j-a;j<q*q; j++) (%
                Systen.out.println("Hello");
            )
            for (int j-a; j< 10; j++) <
                Systen, out println("Warld");
            }
        >
    )
    Answer:}T(q)=q(c\mp@subsup{q}{}{2}+10c)=c\mp@subsup{q}{}{3}+10c
```


Analysis: comparing functions

Question: Should we treat these two functions the same?

Analysis: comparing functions

What about now?

Intuition: our quadratic function is dominating the linear ones Intuition: our linear functions (eventually) look the same

Analysis: comparing functions

Let's zoom in...

Intuition: quadratic function eventually dominates the linear ones

Our goal:

- We want a way to say n^{2} eventually dominates n
- We want a way to treat n and $4 n$ the same way Intuition:
- Model made simplifying assumptions about constant factors - Can usually improve constant-factor differences by being clever
- We want a way to do this rigorously!

True or false?

- Is $n \quad$ "less then or equal to" $5 n+3$?
- Is $5 n+3$ "less then or equal to" n ?
- Is $5 n+3$ "less then or equal to" 1 ?
- Is $5 n+3$ "less then or equal to" n^{2} ?
- Is $n^{2}+3 n+2$ "less then or equal to" n^{3} ?
- Is $n^{3} \quad$ "less then or equal to" $n^{2}+3 n+2$?

Analysis: comparing functions

Our goal:

- We want a way to say n^{2} eventually dominates n
- We want a way to treat n and $4 n$ the same way

Let's formalize this...

Idea 1

A function $f(n)$ is "less then or equal to" $g(n)$ when $f(n) \leq g(n)$ is true for all values of $n \geq 0$.

Does this work? Remember this?
$T(n)$

Problem: incorrectly handles the quadratic function!

Let's formalize this..

Idea 2

A function $f(n)$ is "less then or equal to" $g(n)$ when $f(n) \leq g(n)$ is true for all values of $n \geq n_{0}$.
...where $n_{0}>0$ is some constant value.
Does it work now?
We previously said we want to treat n and $4 n$ as being the "same". Do we?

Problem: No, we don't!

Idea 3

A function $f(n)$ is "less then or equal to" $g(n)$ when
$f(n) \leq c \cdot g(n)$ is true for all values of $n \geq n_{0}$.
...where $n_{0}>0$ is some constant value.
... where $c>0$ is some constant value.
Does it work now?
Yes!

Definition: Dominated by

Definition: Dominated by
A function $f(n)$ is dominated by $g(n)$ when..

- There exists two constants $c>0$ and $n_{0}>0$..
- Such that for all values of $n \geq n_{0} \ldots$
- $f(n) \leq c \cdot g(n)$ is true

The formal definition (not necessary to know this):
Formal definition: Dominated by
A function $f(n)$ is dominated by $g(n)$ when

$$
\exists\left(c>0, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot(f(n) \leq c g(n))
$$

...is true.

Exercise

Demonstrate that $5 n^{2}+3 n+6$ is dominated by n^{3} by finding a c and n_{0} that satisfy the above definition.

Idea: pick $c=10000$ and $n_{0}=10000$. (It probably works
(M)/ノ)
Better idea: show that $5 n^{2}+3 n+6$ is dominated by an easier function to analyze. E.g. note that:

$$
\begin{aligned}
5 n^{2}+3 n+6 & \leq 5 n^{2}+3 n^{2}+6 n^{2} \quad \text { for all } n \geq 1 \\
& =14 n^{2} \\
& \leq 14 n^{3}
\end{aligned}
$$

So, what value of c makes $14 n^{3} \leq c n^{3}$ true (when $n \geq 1$)?
One possible choice: $n_{0}=1$ and $c=14$.
So, since we know $5 n^{2}+3 n+6 \leq 14 n^{3}$ for $n \geq n_{0}$ and also know $14 n^{3} \leq c n^{3}$, we conclude $5 n^{2}+3 n+6 \leq c n^{3}$.

Exercise

Demonstrate that $2 n^{3}-3+9 n^{2}+\sqrt{n}$ is dominated by n^{3} (again by finding a c and n_{0}).

Do the same thing. Note that:

$$
\begin{aligned}
2 n^{3}-3+9 n^{2}+\sqrt{n} & \leq 2 n^{3}+9 n^{2}+n \quad \text { for all } n \geq 1 \\
& \leq 2 n^{3}+9 n^{3}+n^{3} \\
& =12 n^{3}
\end{aligned}
$$

So, one possible choice of n_{0} and c is $n_{0}=1$ and $c=12$.

Families of functions

Observation:

- $n, 5 n+3,100 n$, etc... all dominate each other
- These three functions are the "same"

Idea: can we give a name to this "family" of functions?

Definition: Big-O

$\mathcal{O}(f(n))$ is the "family" or "set" of all functions that are dominated by $f(n)$

Question: are $\mathcal{O}(n), \mathcal{O}(5 n+3)$, and $\mathcal{O}(100 n)$ all the same thing? Yes! By convention, we pick the "simplest" way of writing this and refer to this "family" as $\mathcal{O}(n)$.

A few more questions

True or false:

- $5 n+3 \in \mathcal{O}(n)$
- $n \in \mathcal{O}(5 n+3)$
- $5 n+3=\mathcal{O}(n)$
- $\mathcal{O}(5 n+3)=\mathcal{O}(n)$
- $\mathcal{O}\left(n^{2}\right)=\mathcal{O}(n)$
- $n^{2} \in \mathcal{O}(1)$
- $n^{2} \in \mathcal{O}(n)$
- $n^{2} \in \mathcal{O}\left(n^{2}\right)$
- $n^{2} \in \mathcal{O}\left(n^{3}\right)$
- $n^{2} \in \mathcal{O}\left(n^{100}\right)$

Definitions: Dominates
$f(n) \in \mathcal{O}(g(n))$ is like saying " $f(n)$ is less then or equal to $g(n)$ ".
Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say $f(n)$ dominates $g(n)$ when:

- There exists two constants $c>0$ and $n_{0}>0$..
- Such that for all values of $n \geq n 0 \ldots$
- $f(n) \geq c \cdot g(n)$ is true

Definition: Big- Ω
$\Omega(f(n))$ is the family of all functions that dominates $f(n)$.

A few more questions...

True or false?

- $4 n^{2} \in \Omega(1)$
- $4 n^{2} \in \mathcal{O}(1)$
- $4 n^{2} \in \Omega(n)$
$4 n^{2} \in \mathcal{O}(n)$
- $4 n^{2} \in \Omega\left(n^{2}\right)$
$4 n^{2} \in \mathcal{O}\left(n^{2}\right)$
- $4 n^{2} \in \Omega\left(n^{3}\right)$
$4 n^{2} \in \mathcal{O}\left(n^{3}\right)$
- $4 n^{2} \in \Omega\left(n^{4}\right)$
$4 n^{2} \in \mathcal{O}\left(n^{4}\right)$

Definition: $\operatorname{Big}-\Theta$

Definition: Big- θ
We say $f(n) \in \Theta(g(n))$ when both:

- $f(n) \in \mathcal{O}(g(n))$ and..
- $f(n) \in \Omega(g(n))$
...are true.
Note: in industry, it's common for many people to ask for the big-O when they really want the big- Θ !

Takeaways

Important things to know:

- Intuition behind the definitions of "dominated by" and big-O
- The precise definitions of:
- "Dominated by" and big-O
- "Dominates" and big- Ω
- Big- -
- How to demonstrate that one function is dominated by another by finding c and n_{0} and applying the correct definition

