CSE 373: Asymptotic Analysis

Michael Lee Wednesday, Jan 10, 2018

Warmup

Warmup: construct a mathematical function modeling the worst-case runtime of this method. Your model should be written in terms of q, the provided input integer.

Assume each println takes some constant c time to run.

```
for (int j = 0; j < 10; j++) {
 System.out.println("World");</pre>
```

Answer: $T(q) = q(cq^2 + 10c) = cq^3 + 10cq$

Last time

Two step process:

- 1. Model what we care about as a mathematical function
- 2. Analyze that function using asymptotic analysis Specifically: have a way to compare two functions Even more specifically: define a "less then or equal to" operator for functions

Analysis: comparing functions

Question: Should we treat these two functions the same?

Analysis: comparing functions

What about now?

Intuition: our quadratic function is dominating the linear ones Intuition: our linear functions (eventually) look the same

Analysis: comparing functions

Intuition: quadratic function eventually dominates the linear ones

Analysis: comparing functions

Our goal:

- \blacktriangleright We want a way to say n^2 eventually dominates n
- ightharpoonup We want a way to treat n and 4n the same way

Intuition:

- ► Model made simplifying assumptions about constant factors
- Model made simplifying assumptions about constant factors
 Can usually improve constant-factor differences by being clever
- ► We want a way to do this rigorously!

Function comparison: exercise

True or false?

- ▶ Is n "less then or equal to" 5n + 3?
- ▶ Is 5n + 3 "less then or equal to" n?
- ▶ Is 5n + 3 "less then or equal to" 1?
 - ▶ Is 5n + 3 "less then or equal to" n^2 ?
 - ▶ Is $n^2 + 3n + 2$ "less then or equal to" n^3 ?

► Is n^3 "less then or equal to" $n^2 + 3n + 2$?

8

Analysis: comparing functions

Our goal:

- ▶ We want a way to say n² eventually dominates n
- ► We want a way to treat n and 4n the same way

Let's formalize this...

Idea 1

A function f(n) is "less then or equal to" g(n) when $f(n) \le g(n)$ is true for all values of $n \ge 0$.

Does this work? Remember this?

Let's formalize this..

Idea 2

A function f(n) is "less then or equal to" g(n) when $f(n) \leq g(n)$ is true for all values of $n \geq n_0$.

...where $n_0 > 0$ is some constant value.

Does it work now?

We previously said we want to treat n and 4n as being the "same". Do we?

Problem: No, we don't!

Let's formalize this...

Idea 3

A function f(n) is "less then or equal to" g(n) when $f(n) \le c \cdot g(n)$ is true for all values of $n \ge n_0$.

...where $n_0 > 0$ is some constant value.

...where c>0 is some constant value.

Does it work now?

Veel

...

Definition: Dominated by

Definition: Dominated by

A function f(n) is dominated by g(n) when...

- There exists two constants c > 0 and n₀ > 0...
- ▶ Such that for all values of n > no...
- ▶ $f(n) \le c \cdot g(n)$ is true
- The formal definition (not necessary to know this):

Formal definition: Dominated by

A function f(n) is dominated by g(n) when

$$\exists (c > 0, n_0 > 0). \forall (n \ge n_0). (f(n) \le cg(n))$$

...is true.

Exercise

Demonstrate that $5n^2 + 3n + 6$ is dominated by n^3 by finding a c and n_0 that satisfy the above definition.

Idea: pick c = 10000 and $n_0 = 10000$. (It probably works "\LOVL/") Better idea: show that $5n^2 + 3n + 6$ is dominated by an easier

function to analyze. E.g. note that:

$$5n^2+3n+6\leq 5n^2+3n^2+6n^2 \qquad \text{ for all } n\geq 1$$

$$=14n^2$$

$$\leq 14n^3$$

So, what value of c makes $14n^3 \le cn^3$ true (when $n \ge 1$)?

One possible choice: $n_0 = 1$ and c = 14.

So, since we know $5n^2 + 3n + 6 \le 14n^3$ for $n \ge n_0$ and also know $14n^3 \le cn^3$, we conclude $5n^2 + 3n + 6 \le cn^3$.

Exercise

Demonstrate that $2n^3 - 3 + 9n^2 + \sqrt{n}$ is dominated by n^3 (again by finding a c and n_0).

Do the same thing. Note that:

$$\begin{array}{ll} 2n^3-3+9n^2+\sqrt{n}\leq 2n^3+9n^2+n & \text{ for all } n\geq 1\\ & \leq 2n^3+9n^3+n^3\\ & = 12n^3 \end{array}$$

So, one possible choice of n_0 and c is $n_0 = 1$ and c = 12.

Families of functions

Observation:

- n, 5n + 3, 100n, etc... all dominate each other
- ► These three functions are the "same"

Idea: can we give a name to this "family" of functions?

Definition: Big-O O(f(n)) is the "family" or "set" of all functions that are dominated by f(n)

Question: are O(n), O(5n + 3), and O(100n) all the same thing? Yes! By convention, we pick the "simplest" way of writing this and refer to this "family" as O(n).

Families of functions

A question: Do the following two sentences mean the same thing?

- ▶ f(n) is dominated by g(n)
- ► f(n) is contained inside O(g(n))

We can write this more concisely as $f(n) \in O(g(n))$.

An aside: some people write this as f(n) = O(g(n))

This is wrong (but common, so we reluctantly accept this)

A few more questions

True or false:

- 5n + 3 ∈ O (n)
- n ∈ O (5n + 3)
- ▶ 5n + 3 = O(n)
- ▶ O(5n + 3) = O(n)
- $\triangleright \mathcal{O}(n^2) = \mathcal{O}(n)$
- ▶ $n^2 \in \mathcal{O}(1)$
- ▶ $n^2 \in \mathcal{O}(n)$
- ▶ $n^2 \in \mathcal{O}(n^2)$
- ▶ $n^2 \in \mathcal{O}(n^3)$
- ▶ $n^2 \in O(n^{100})$

18

Definitions: Dominates

 $f(n) \in O(g(n))$ is like saying "f(n) is less then or equal to g(n)". Is there a way to say "greater then or equal to"? Yes!

Definition: Dominates

We say f(n) dominates g(n) when:

- ▶ There exists two constants c > 0 and n₀ > 0...
- Such that for all values of n ≥ n₀...
- ▶ $f(n) \ge c \cdot g(n)$ is true

Definition: Big- Ω

 $\Omega(f(n))$ is the family of all functions that dominates f(n).

A few more questions...

- True or false?
- ► $4n^2 \in \Omega(1)$
- \blacktriangleright $4n^2 \in \mathcal{O}(1)$ ▶ $4n^2 \in \mathcal{O}(n)$
- ▶ $4n^2 \in \Omega(n)$
- $\blacktriangleright 4n^2 \in \Omega(n^2)$ ▶ $4n^2 \in \mathcal{O}(n^2)$
- ▶ $4n^2 \in \Omega(n^3)$ ▶ $4n^2 \in \mathcal{O}(n^3)$
- ► $4n^2 \in \Omega(n^4)$ ▶ $4n^2 \in \mathcal{O}(n^4)$

Definition: Big-⊖

Definition: Big-⊖

We say $f(n) \in \Theta(g(n))$ when both:

- ▶ $f(n) \in O(g(n))$ and...
- ► $f(n) \in \Omega(g(n))$

Note: in industry, it's common for many people to ask for the big-O when they really want the big- Θ !

Takeaways

Important things to know:

▶ Big-Θ

- ► Intuition behind the definitions of "dominated by" and big-O
- ➤ The precise definitions of:
 - ► "Dominated by" and big-O
 - ▶ "Dominates" and big-Ω
- ► How to demonstrate that one function is dominated by

another by finding c and n_0 and applying the correct definition