
CSE 373: Asymptotic Analysis

Michael Lee
Monday Jan 8, 2017

1



Warmup

Warmup
Remind your neighbor: what fields did our array list iterator need?

2



Comparing algorithms

Goal: compare algorithms

What are we comparing? Lots of metrics we could pick!

I Time needed to run
I Memory used
I Number of network calls made
I Amount of data we save to the disk
I etc...

(Some metrics are intangible: clarity, security... Hard to measure those.)

Today: focus on comparing algorithms based on how long it takes
them to run in the worst case.

3



Comparing algorithms

Goal: compare algorithms
What are we comparing? Lots of metrics we could pick!

I Time needed to run
I Memory used
I Number of network calls made
I Amount of data we save to the disk
I etc...

(Some metrics are intangible: clarity, security... Hard to measure those.)

Today: focus on comparing algorithms based on how long it takes
them to run in the worst case.

3



Comparing algorithms

Goal: compare algorithms
What are we comparing? Lots of metrics we could pick!

I Time needed to run
I Memory used
I Number of network calls made
I Amount of data we save to the disk
I etc...

(Some metrics are intangible: clarity, security... Hard to measure those.)

Today: focus on comparing algorithms based on how long it takes
them to run in the worst case.

3



Comparing algorithms

Goal: compare algorithms
What are we comparing? Lots of metrics we could pick!

I Time needed to run
I Memory used
I Number of network calls made
I Amount of data we save to the disk
I etc...

(Some metrics are intangible: clarity, security... Hard to measure those.)

Today: focus on comparing algorithms based on how long it takes
them to run in the worst case.

3



An idea: let’s time our algorithms!

Goal: find the number of primes below n

Time taken for n = 18000

Algorithm Time (in ms)

Algo 1 0.0018
Algo 2 35.58
Algo 3 100.75

Which algorithm is better?

This is a trick question. Why isn’t this table enough to let us
decide which algorithm is better?

4



An idea: let’s time our algorithms!

Goal: find the number of primes below n

Time taken for n = 18000

Algorithm Time (in ms)

Algo 1 0.0018
Algo 2 35.58
Algo 3 100.75

Which algorithm is better?

This is a trick question. Why isn’t this table enough to let us
decide which algorithm is better?

4



An idea: let’s time our algorithms!

Goal: find the number of primes below n

Time taken for n = 18000

Algorithm Time (in ms)

Algo 1 0.0018
Algo 2 35.58
Algo 3 100.75

Which algorithm is better?

Which algorithm is better?

This is a trick question. Why isn’t this table enough to let us
decide which algorithm is better?

4



An idea: let’s time our algorithms!

Goal: find the number of primes below n

Time taken for n = 18000

Algorithm Time (in ms)

Algo 1 0.0018
Algo 2 35.58
Algo 3 100.75

Which algorithm is better?

This is a trick question. Why isn’t this table enough to let us
decide which algorithm is better?

4



An idea: let’s time our algorithms!

Which algorithm is better?

5



Our goal

What we want:

I To see overall trends as input increases
(considering a single data point isn’t useful)

I Final result is independent of incidental factors
(CPU speed, other programs that may be running, battery life,
programming language, coding tricks...)

I Rigorously discover overall trends without resorting to testing
(what if we miss worst-case input? best-case input?)

I A way to analyze before coding!

6



Our goal

What we want:

I To see overall trends as input increases
(considering a single data point isn’t useful)

I Final result is independent of incidental factors
(CPU speed, other programs that may be running, battery life,
programming language, coding tricks...)

I Rigorously discover overall trends without resorting to testing
(what if we miss worst-case input? best-case input?)

I A way to analyze before coding!

6



Our goal

What we want:

I To see overall trends as input increases
(considering a single data point isn’t useful)

I Final result is independent of incidental factors
(CPU speed, other programs that may be running, battery life,
programming language, coding tricks...)

I Rigorously discover overall trends without resorting to testing
(what if we miss worst-case input? best-case input?)

I A way to analyze before coding!

6



Our goal

What we want:

I To see overall trends as input increases
(considering a single data point isn’t useful)

I Final result is independent of incidental factors
(CPU speed, other programs that may be running, battery life,
programming language, coding tricks...)

I Rigorously discover overall trends without resorting to testing
(what if we miss worst-case input? best-case input?)

I A way to analyze before coding!

6



Our process

Two step process:

1. Model what we care about as a mathematical function
2. Analyze that function using asymptotic analysis

7



Modeling: Assumptions

Assumption: basic operations take “constant” time

I Arithmetic (for fixed-width numbers)
I Variable assignment
I Accessing a field or array index
I Printing something out
I etc...

Warning: These assumptions are over-simplifications.

But they’re very useful approximations!

8



Modeling: Assumptions

Assumption: basic operations take “constant” time

I Arithmetic (for fixed-width numbers)
I Variable assignment
I Accessing a field or array index
I Printing something out
I etc...

Warning: These assumptions are over-simplifications.

But they’re very useful approximations!

8



Modeling: Complex statements

I Consecutive statements
Sum of time of each statement

I Function calls
Time of function’s body

I Conditionals
Time of condition + max(if branch, else branch)

I Loops
Number of iterations × time for loop body

9



Modeling: Complex statements

I Consecutive statements
Sum of time of each statement

I Function calls
Time of function’s body

I Conditionals
Time of condition + max(if branch, else branch)

I Loops
Number of iterations × time for loop body

9



Modeling: Complex statements

I Consecutive statements
Sum of time of each statement

I Function calls
Time of function’s body

I Conditionals
Time of condition + max(if branch, else branch)

I Loops
Number of iterations × time for loop body

9



Modeling: Complex statements

I Consecutive statements
Sum of time of each statement

I Function calls
Time of function’s body

I Conditionals
Time of condition + max(if branch, else branch)

I Loops
Number of iterations × time for loop body

9



Modeling: exercise

Goal: return ’true’ if a sorted array of ints contains duplicates

Algorithm 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++)

for (int j = 0; j < array.length; j++)

if (i != j && array[i] == array[j])

return true;

return false;

}

Algorithm 2: compare each consecutive pairs of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++)

if (array[i] == array[i + 1])

return true;

return false;

}

Exercise: create a mathematical function modeling the amount
of time taken in the worst case

10



Modeling: exercise

Goal: return ’true’ if a sorted array of ints contains duplicates

Algorithm 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++)

for (int j = 0; j < array.length; j++)

if (i != j && array[i] == array[j])

return true;

return false;

}

Algorithm 2: compare each consecutive pairs of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++)

if (array[i] == array[i + 1])

return true;

return false;

}

Exercise: create a mathematical function modeling the amount
of time taken in the worst case

10



Modeling: exercise

Goal: return ’true’ if a sorted array of ints contains duplicates

Algorithm 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++)

for (int j = 0; j < array.length; j++)

if (i != j && array[i] == array[j])

return true;

return false;

}

Algorithm 2: compare each consecutive pairs of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++)

if (array[i] == array[i + 1])

return true;

return false;

}

Exercise: create a mathematical function modeling the amount
of time taken in the worst case

10



Modeling: exercise

Goal: return ’true’ if a sorted array of ints contains duplicates

Algorithm 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++)

for (int j = 0; j < array.length; j++)

if (i != j && array[i] == array[j])

return true;

return false;

}

Algorithm 2: compare each consecutive pairs of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++)

if (array[i] == array[i + 1])

return true;

return false;

}

Exercise: create a mathematical function modeling the amount
of time taken in the worst case 10



Our process

Two step process:

1. Model what we care about as a mathematical function
2. Analyze that function using asymptotic analysis

Specifically: have a way to compare two functions

11



Our process

Two step process:

1. Model what we care about as a mathematical function
2. Analyze that function using asymptotic analysis

Specifically: have a way to compare two functions

11


