Section 03: Solutions

1. Analysis

For each of the following code blocks, what is the worst-case runtime? Give a big- Θ bound.
(a)

```
public IList<String> repeat(DoubleLinkedList<String> list, int n) {
    IList<String> result = new DoubleLinkedList<String>();
    for(String str : list) {
        for(int i = 0; i < n; i++) {
            result.add(str);
        }
    }
    return result;
}
```


Solution:

The runtime is $\Theta(n m)$, where m is the length of the input list and n is equal to the int n parameter.
One thing to note here is that unlike many of the methods we've analyzed before, we can't quite describe the runtime of this algorithm using just a single variable: we need two, one for each loop.
The other thing to remember is that in Java, foreach loops are converted into a while loop using iterators, which will influence the final runtime of our algorithm.
(b) public void foo(int n) \{
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) \{
for (int $\mathrm{j}=5$; $\mathrm{j}<\mathrm{i}$; j^{++}) \{
System.out. println("Hello!");
\}
for (int $\mathrm{j}=\mathrm{i}$; $\mathrm{j}>=0$; j -= 2) \{
System.out. println("Hello!");
\}
\}
\}

Solution:

$$
\Theta\left(n^{2}\right)
$$

(c) public int num(int n) \{ if ($\mathrm{n}<10$) \{ return n ;
\} else if ($n<1000$) \{
return num (n - 2);
\} else \{
return num($\mathrm{n} / 2$);
\}
\}

Solution:

The answer is $\Theta(\log (n))$.
One thing to note is that the second case effectively has no impact on the runtime. That second case occurs only for $n<1000$ - when discussing asymptotic analysis, we only care what happens with the runtime as n grows large.
(d)

```
public int foo(int n) {
    if (n<= 0) {
        return 3;
    }
    int x = foo(n - 1);
    System.out.println("hello");
    x += foo(n - 1);
    return x;
}
```

Solution:
The answer is $\Theta\left(2^{n}\right)$.
In order to determine that this is exponential, let's start by considering the following recurrence:

$$
T(n)= \begin{cases}1 & \text { If } n=0 \\ 2 T(n-1)+1 & \text { Otherwise }\end{cases}
$$

While we could unfold this to get an exact closed form, we can approximate the final asymptotic behavior by taking a step back and thinking on a higher level what this is doing.

Basically, what happens is we take the work done by $T(n-1)$ and multiply it by 2 . If we ignore the +1 constant work done in the recursive case, the net effect is that we multiply 2 approximately n times. This simplifies to 2^{n}.

2. Recurrences

For each of the following recurrences, use the unfolding method to first convert the recurrence into a summation. Then, find a big- Θ bound on the function in terms of n. Assume all division operations are integer division.
(a) $T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+3 & \text { otherwise }\end{cases}$

Solution:

The summation is $1+\sum_{i=2}^{\log (n)+1} 3$. The big- Θ bound is $\Theta(\log (n))$.
Something you may notice is that depending on what exactly n is, the expression $\log (n)+1$ may not evaluate to an integer. In that case, what does it mean to have $\log (n)+1$ as the upper limit of a summation?
What exactly this mean differs based on convention, but for the purposes of this class, we'll assume that i varies starting at 2 up to the largest possible integer that is $\leq \log (n)+1$. We could write this more explicitly using floors: $1+\sum_{i=2}^{\lfloor\log (n)+1\rfloor} 3$.
(b) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+2 & \text { otherwise }\end{cases}$

Solution:

The summation is $1+\sum_{i=1}^{n} 2$. The big- Θ bound is $\Theta(n)$.
(c) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n / 3)+4 & \text { otherwise }\end{cases}$

Solution:

The summation is $1+\sum_{i=1}^{\log _{3}(n)+1} 4$. The big- Θ bound is $\Theta(n)$.
(d) $T(n)= \begin{cases}1 & \text { if } n=0 \\ 2 T(n / 3)+n & \text { otherwise }\end{cases}$

Solution:

In order to determine what this expression looks like as a summation, it helps to first partially unroll it:

$$
\begin{aligned}
T(n) & =n+2 T\left(\frac{n}{3}\right) \\
& =n+2\left(\frac{n}{3}+2 T\left(\frac{n}{9}\right)\right) \\
& =n+2\left(\frac{n}{3}+2\left(\frac{n}{9}+2 T\left(\frac{n}{27}\right)\right)\right) \\
& =n+2\left(\frac{n}{3}+2\left(\frac{n}{9}+2\left(\frac{n}{27}+2 T\left(\frac{n}{81}\right)\right)\right)\right)
\end{aligned}
$$

We then multiply in the 2 on the outside:

$$
\begin{aligned}
T(n) & =n+2\left(\frac{n}{3}+2\left(\frac{n}{9}+2\left(\frac{n}{27}+2 T\left(\frac{n}{81}\right)\right)\right)\right) \\
& =n+2 \frac{n}{3}+2^{2}\left(\frac{n}{9}+2\left(\frac{n}{27}+2 T\left(\frac{n}{81}\right)\right)\right) \\
& =n+2 \frac{n}{3}+2^{2} \frac{n}{9}+2^{3}\left(\frac{n}{27}+2 T\left(\frac{n}{81}\right)\right) \\
& =n+2 \frac{n}{3}+2^{2} \frac{n}{9}+2^{3} \frac{n}{27}+2^{4} T\left(\frac{n}{81}\right)
\end{aligned}
$$

We can start to see the pattern now: our summation is roughly of the form $\sum_{i=?}^{?} 2^{i} \frac{n}{3^{i}}$.
What about the base case? It's not just 1 , we need to multiply it by some power of 2 to account for the accumulating multiples.
We put all the pieces together and finish: $1 \cdot 2^{\left\lfloor\log _{3}(n)+1\right\rfloor}+\sum_{i=0}^{\log _{3}(n)} \frac{2^{i}}{3^{i}} n$
To compute the Θ bound, we observe that the large constant, despite being large, is still ultimately a
constant. We can also simplify the summation by pulling out the n (since it doesn't vary on i). The remaining summation must simplify to some integer. So, we conclude $\Theta(n)$.
(e) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 T(n-1)+1 & \text { otherwise }\end{cases}$

Solution:

Using a similar process, we get the following expression: $2^{n-1}+\sum_{i=2}^{n} 2^{i-2}$.
This ends up being in $\Theta\left(2^{i}\right)$.
(f) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 T(n / 2)+100 & \text { otherwise }\end{cases}$

Solution:

We first get $2^{\lfloor\log (n)\rfloor}+\sum_{i=2}^{\log (n)+1} 100 \cdot 2^{i-2}$.
Therefore, we have $\Theta(\log (n))$.

3. Modeling recursive functions

Consider the following method.

```
public static int f(int n) {
    if (n == 0) {
        return 0;
    }
    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
            result += j;
        }
    }
    return 5 * f(n / 2) + 3 * result + 2 * f(n / 2);
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case runtime of $\mathrm{f}(\mathrm{n})$.

Solution:

$$
T(n)= \begin{cases}1 & \text { When } n=0 \\ \frac{n(n-1)}{2}+2 T(n / 2) & \text { Otherwise }\end{cases}
$$

(b) Find a recurrence $W(n)$ modeling the integer output of $\mathrm{f}(\mathrm{n})$.

Solution:

$$
W(n)= \begin{cases}0 & \text { When } n=0 \\ \frac{3 n(n-1)}{2}+7 T(n / 2) & \text { Otherwise }\end{cases}
$$

4. Modeling recursive functions 2

```
public static int g(n) {
    if (n <= 1) {
        return 1000;
    }
    if (g(n / 3) > 5) {
        for (int i = 0; i < n; i++) {
            System.out.println("Hello");
        }
        return 5 * g(n / 3);
    } else {
        for (int i = 0; i < n * n; i++) {
            System.out.println("World");
        }
        return 4 * g(n / 3);
    }
}
```

(a) Find a recurrence $S(n)$ modeling the worst-case runtime of $g(n)$.

Solution:

$$
S(n)= \begin{cases}1 & \text { When } n \leq 1 \\ 2 S(n / 3)+n & \text { Otherwise }\end{cases}
$$

Important: note that the if statement contains a recursive call that must be evaluated for $n>1$.
(b) Find a recurrence $X(n)$ modeling the integer output of $\mathrm{g}(\mathrm{n})$.

Solution:

$$
X(n)= \begin{cases}1000 & \text { When } n \leq 1 \\ 5 T(n / 3) & \text { Otherwise }\end{cases}
$$

5. Modeling recursive functions 3

Consider the following set of recursive methods.

```
public int test(int n) {
    IDictionary<Integer, Integer> dict = new AvlDictionary<>();
    populate(n, dict);
    int counter = 0;
    for (int i = 0; i < n; i++) {
        counter += dict.get(i);
    }
    return counter;
}
private void populate(int k, IDictionary<Integer, Integer> dict) {
    if (k == 0) {
        dict.put(0, k);
    } else {
        for (int i = 0; i < k; i++) {
            dict.put(i, i);
        }
        populate(k / 2, dict);
    }
}
```

(a) Write a mathematical function representing the worst-case runtime of test.

You should write two functions, one for the runtime of test and one for the runtime of populate.

Solution:

The runtime of the populate method is:

$$
P(k)= \begin{cases}\log (N) & \text { When } k=0 \\ k \log (k)+P(k / 2) & \text { Otherwise }\end{cases}
$$

Here, N is the maximum possible value of n
The runtime of the test method is then $R(n)=P(n)+n$.
(b) Write a mathematical function representing the integer output of test.

Solution:

$$
Y(n)=\frac{n(n-1)}{2}
$$

6. AVL Trees

(a) Draw an AVL Tree as each of the following keys are added in the order given. Show intermediate steps.

$$
\{13,17,14,19,22,18,11,10,21\}
$$

Solution:

(b) Draw an AVL Tree as each of the following keys are added in the order given. Show intermediate steps.

$$
\{1,2,3,4,5,6\}
$$

Solution:

7. More AVL Trees

(a) Is this a valid AVL tree? Explain your answer.

Solution:

No, does not meet the balance property.
(b) Is this a valid AVL tree? Explain your answer.

Solution:

No, does not meet the BST property. 12 is not greater than 18 .
(c) Is this a valid AVL tree? Explain your answer.

Solution:

[^0]
8. Algorithm Design

(a) Given a binary search tree, describe how you could convert it into an AVL tree with worst-case time $\mathcal{O}(n \log (n))$. What is the best case runtime of your algorithm?

Solution:

Since we already have a BST, we can do an in-order traversal on the tree to get a sorted array of nodes. We could now simply insert all of these nodes back into an AVL tree using rotations which would give us an $\mathcal{O}(n \log (n))$ runtime.
(b) Given an AVL tree, describe how would you do a level order tree traversal. What is the worst-case runtime of your algorithm?

Solution:

Since an AVL tree is just a balanced BST, we can use a queue to add each node we visit. As we dequeue each node, we will add it's children to the queue. We would get an $\mathcal{O}(n)$ runtime.

[^0]: Yes, it satisfies the balance and BST properties.

