
Section 03: Solutions

1. Analysis

For each of the following code blocks, what is the worst-case runtime? Give a big-Θ bound.

(a) public IList<String> repeat(DoubleLinkedList<String> list, int n) {

IList<String> result = new DoubleLinkedList<String>();

for(String str : list) {

for(int i = 0; i < n; i++) {

result.add(str);

}

}

return result;

}

Solution:

The runtime is Θ(nm), where m is the length of the input list and n is equal to the int n parameter.

One thing to note here is that unlike many of the methods we’ve analyzed before, we can’t quite describe
the runtime of this algorithm using just a single variable: we need two, one for each loop.

The other thing to remember is that in Java, foreach loops are converted into a while loop using iterators,
which will influence the final runtime of our algorithm.

(b) public void foo(int n) {

for (int i = 0; i < n; i++) {

for (int j = 5; j < i; j++) {

System.out.println(”Hello!”);

}

for (int j = i; j >= 0; j -= 2) {

System.out.println(”Hello!”);

}

}

}

Solution:

Θ
(
n2

)
.

(c) public int num(int n){

if (n < 10) {

return n;

} else if (n < 1000) {

return num(n - 2);

} else {

return num(n / 2);

}

}

Solution:

1

The answer is Θ(log(n)).

One thing to note is that the second case effectively has no impact on the runtime. That second case occurs
only for n < 1000 – when discussing asymptotic analysis, we only care what happens with the runtime as
n grows large.

(d) public int foo(int n) {

if (n <= 0) {

return 3;

}

int x = foo(n - 1);

System.out.println(”hello”);

x += foo(n - 1);

return x;

}

Solution:

The answer is Θ(2n).

In order to determine that this is exponential, let’s start by considering the following recurrence:

T (n) =

{
1 If n = 0

2T (n− 1) + 1 Otherwise

While we could unfold this to get an exact closed form, we can approximate the final asymptotic behavior
by taking a step back and thinking on a higher level what this is doing.

Basically, what happens is we take the work done by T (n − 1) and multiply it by 2. If we ignore the +1
constant work done in the recursive case, the net effect is that we multiply 2 approximately n times. This
simplifies to 2n.

2. Recurrences

For each of the following recurrences, use the unfolding method to first convert the recurrence into a summation.
Then, find a big-Θ bound on the function in terms of n. Assume all division operations are integer division.

(a) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

Solution:

The summation is 1 +
log(n)+1∑

i=2

3. The big-Θ bound is Θ(log(n)).

Something you may notice is that depending on what exactly n is, the expression log(n) + 1 may not
evaluate to an integer. In that case, what does it mean to have log(n)+1 as the upper limit of a summation?

What exactly this mean differs based on convention, but for the purposes of this class, we’ll assume that
i varies starting at 2 up to the largest possible integer that is ≤ log(n) + 1. We could write this more

explicitly using floors: 1 +
blog(n)+1c∑

i=2

3.

2

(b) T (n) =

{
1 if n = 0

T (n− 1) + 2 otherwise

Solution:

The summation is 1 +
n∑

i=1

2. The big-Θ bound is Θ(n).

(c) T (n) =

{
1 if n = 0

T (n/3) + 4 otherwise

Solution:

The summation is 1 +
log3(n)+1∑

i=1

4. The big-Θ bound is Θ(n).

(d) T (n) =

{
1 if n = 0

2T (n/3) + n otherwise

Solution:

In order to determine what this expression looks like as a summation, it helps to first partially unroll it:

T (n) = n+ 2T
(n
3

)
= n+ 2

(n
3
+ 2T

(n
9

))
= n+ 2

(n
3
+ 2

(n
9
+ 2T

(n

27

)))
= n+ 2

(n
3
+ 2

(n
9
+ 2

(n

27
+ 2T

(n

81

))))
We then multiply in the 2 on the outside:

T (n) = n+ 2
(n
3
+ 2

(n
9
+ 2

(n

27
+ 2T

(n

81

))))
= n+ 2

n

3
+ 22

(n
9
+ 2

(n

27
+ 2T

(n

81

)))
= n+ 2

n

3
+ 22

n

9
+ 23

(n

27
+ 2T

(n

81

))
= n+ 2

n

3
+ 22

n

9
+ 23

n

27
+ 24T

(n

81

)

We can start to see the pattern now: our summation is roughly of the form
?∑

i=?

2i
n

3i
.

What about the base case? It’s not just 1, we need to multiply it by some power of 2 to account for the
accumulating multiples.

We put all the pieces together and finish: 1 · 2blog3(n)+1c +

log3(n)∑
i=0

2i

3i
n

To compute the Θ bound, we observe that the large constant, despite being large, is still ultimately a

3

constant. We can also simplify the summation by pulling out the n (since it doesn’t vary on i). The
remaining summation must simplify to some integer. So, we conclude Θ(n).

(e) T (n) =

{
1 if n = 1

2T (n− 1) + 1 otherwise

Solution:

Using a similar process, we get the following expression: 2n−1 +

n∑
i=2

2i−2.

This ends up being in Θ
(
2i
)
.

(f) T (n) =

{
1 if n = 1

2T (n/2) + 100 otherwise

Solution:

We first get 2blog(n)c +
log(n)+1∑

i=2

100 · 2i−2.

Therefore, we have Θ(log(n)).

3. Modeling recursive functions

Consider the following method.

public static int f(int n) {

if (n == 0) {

return 0;

}

int result = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

result += j;

}

}

return 5 * f(n / 2) + 3 * result + 2 * f(n / 2);

}

(a) Find a recurrence T (n) modeling the worst-case runtime of f(n).

Solution:

T (n) =

{
1 When n = 0
n(n−1)

2 + 2T (n/2) Otherwise

(b) Find a recurrence W (n) modeling the integer output of f(n).

4

Solution:

W (n) =

{
0 When n = 0
3n(n−1)

2 + 7T (n/2) Otherwise

4. Modeling recursive functions 2

public static int g(n) {

if (n <= 1) {

return 1000;

}

if (g(n / 3) > 5) {

for (int i = 0; i < n; i++) {

System.out.println(”Hello”);

}

return 5 * g(n / 3);

} else {

for (int i = 0; i < n * n; i++) {

System.out.println(”World”);

}

return 4 * g(n / 3);

}

}

(a) Find a recurrence S(n) modeling the worst-case runtime of g(n).

Solution:

S(n) =

{
1 When n ≤ 1

2S(n/3) + n Otherwise

Important: note that the if statement contains a recursive call that must be evaluated for n > 1.

(b) Find a recurrence X(n) modeling the integer output of g(n).

Solution:

X(n) =

{
1000 When n ≤ 1

5T (n/3) Otherwise

5

5. Modeling recursive functions 3

Consider the following set of recursive methods.

public int test(int n) {

IDictionary<Integer, Integer> dict = new AvlDictionary<>();

populate(n, dict);

int counter = 0;

for (int i = 0; i < n; i++) {

counter += dict.get(i);

}

return counter;

}

private void populate(int k, IDictionary<Integer, Integer> dict) {

if (k == 0) {

dict.put(0, k);

} else {

for (int i = 0; i < k; i++) {

dict.put(i, i);

}

populate(k / 2, dict);

}

}

(a) Write a mathematical function representing the worst-case runtime of test.

You should write two functions, one for the runtime of test and one for the runtime of populate.

Solution:

The runtime of the populate method is:

P (k) =

{
log(N) When k = 0

k log(k) + P (k/2) Otherwise

Here, N is the maximum possible value of n

The runtime of the test method is then R(n) = P (n) + n.

(b) Write a mathematical function representing the integer output of test.

Solution:

Y (n) =
n(n− 1)

2

6

6. AVL Trees

(a) Draw an AVL Tree as each of the following keys are added in the order given. Show intermediate steps.

{13, 17, 14, 19, 22, 18, 11, 10, 21}

Solution:

17

13

11

10

14

19

18 22

21

(b) Draw an AVL Tree as each of the following keys are added in the order given. Show intermediate steps.

{1, 2, 3, 4, 5, 6}

Solution:

4

2

1 3

5

6

7. More AVL Trees

(a) Is this a valid AVL tree? Explain your answer.

O

I

C

D

K

P

Solution:

7

No, does not meet the balance property.

(b) Is this a valid AVL tree? Explain your answer.

11

7

2

1

9

18

15 12

Solution:

No, does not meet the BST property. 12 is not greater than 18.

(c) Is this a valid AVL tree? Explain your answer.

25

16

2

7

19

57

32

Solution:

Yes, it satisfies the balance and BST properties.

8

8. Algorithm Design

(a) Given a binary search tree, describe how you could convert it into an AVL treewithworst-case timeO (n log(n)).
What is the best case runtime of your algorithm?

Solution:

Since we already have a BST, we can do an in-order traversal on the tree to get a sorted array of nodes.
We could now simply insert all of these nodes back into an AVL tree using rotations which would give us
an O (n log(n)) runtime.

(b) Given an AVL tree, describe how would you do a level order tree traversal. What is the worst-case runtime of
your algorithm?

Solution:

Since an AVL tree is just a balanced BST, we can use a queue to add each node we visit. As we dequeue
each node, we will add it’s children to the queue. We would get an O (n) runtime.

9

	Analysis
	Recurrences
	Modeling recursive functions
	Modeling recursive functions 2
	Modeling recursive functions 3
	AVL Trees
	More AVL Trees
	Algorithm Design

