
Quickcheck 03: Solutions

Name:

Consider the following recursive function. You may assume that the input will be a multiple of 3.

public int test(int n) {

if (n <= 6) {

return 2;

} else {

int curr = 0;

for (int i = 0; i < n * n; i++) {

curr += 1;

}

return curr + test(n - 3);

}

}

(a) Write a recurrence modeling the worst-case runtime of test.

Solution:

T (n) =

{
1 When n ≤ 6

n2 + T (n− 3) Otherwise

(b) Unfold the recurrence into a summation (for n ≥ 6).

Solution:

1 +

n/3∑
i=3

(3i)2

Modeling this recurrence correctly is slightly challenging because we want to decrease n in increments of
3.

To do this, what we do is set the summation bounds to go up to n/3 instead of n, and multiply i on the
inside by 3, simulating changing i in those increments.

We then also set the lower summation bound to be 3 instead of 0 or 1. That way, our summation will only
consider numbers in the range 9 to n – if we set i = 2 or lower, our summation would double-cound n ≤ 6,
which should be handled by the base case.

Note: our model only works if n is a multiple of 3.

1



(c) Simplify the summation into a closed form (for n ≥ 6).

Solution:

1 +

n/3∑
i=3

(3i)2 = 1 +

n/3∑
i=0

(3i)2 −
2∑

i=0

(3i)2 Adjusting summation bounds

= 1 + 9

n/3∑
i=0

i2 −
2∑

i=0

(3i)2 Pulling out a constant

= 1 + 9

n/3∑
i=0

i2 − (0 + 9 + 36) Evaluating the summation

= 9
n
3

(
n
3 + 1

) (
2n
3 + 1

)
6

− 44 Sum of squares

A “closed form”, within the context of this class, is just any expression that does not contain a summation
or is recursive. This means we can stop here without needing to further simplify the expression.

That said, if you wanted to continue simplifying, we could:

9
n
3

(
n
3 + 1

) (
2n
3 + 1

)
6

− 44 =
9

6

(
n

3

(n
3
+ 1

)(
2n

3
+ 1

))
− 44

=
1

2

(
n
(n
3
+ 1

)(
2n

3
+ 1

))
− 44

=
1

2

(
n

(
2

9
n2 + n+ 1

))
− 44

=
1

9
n3 +

1

2
n2 +

1

2
n− 44

2


