Quickcheck 03: Solutions

Name:

Consider the following recursive function. You may assume that the input will be a multiple of 3.

```
public int test(int n) {
    if (n <= 6) {
            return 2;
    } else {
            int curr = 0;
            for (int i = 0; i < n * n; i++) {
                curr += 1;
            }
            return curr + test(n - 3);
    }
}
```

(a) Write a recurrence modeling the worst-case runtime of test.

Solution:

$$
T(n)= \begin{cases}1 & \text { When } n \leq 6 \\ n^{2}+T(n-3) & \text { Otherwise }\end{cases}
$$

(b) Unfold the recurrence into a summation (for $n \geq 6$).

Solution:

$$
1+\sum_{i=3}^{n / 3}(3 i)^{2}
$$

Modeling this recurrence correctly is slightly challenging because we want to decrease n in increments of 3.

To do this, what we do is set the summation bounds to go up to $n / 3$ instead of n, and multiply i on the inside by 3 , simulating changing i in those increments.
We then also set the lower summation bound to be 3 instead of 0 or 1 . That way, our summation will only consider numbers in the range 9 to n - if we set $i=2$ or lower, our summation would double-cound $n \leq 6$, which should be handled by the base case.

Note: our model only works if n is a multiple of 3 .
(c) Simplify the summation into a closed form (for $n \geq 6$).

Solution:

$$
\begin{array}{rlr}
1+\sum_{i=3}^{n / 3}(3 i)^{2} & =1+\sum_{i=0}^{n / 3}(3 i)^{2}-\sum_{i=0}^{2}(3 i)^{2} & \text { Adjusting summation bounds } \\
& =1+9 \sum_{i=0}^{n / 3} i^{2}-\sum_{i=0}^{2}(3 i)^{2} & \text { Pulling out a constant } \\
& =1+9 \sum_{i=0}^{n / 3} i^{2}-(0+9+36) & \text { Evaluating the summation } \\
& =9 \frac{\frac{n}{3}\left(\frac{n}{3}+1\right)\left(\frac{2 n}{3}+1\right)}{6}-44 & \text { Sum of squares }
\end{array}
$$

A "closed form", within the context of this class, is just any expression that does not contain a summation or is recursive. This means we can stop here without needing to further simplify the expression.

That said, if you wanted to continue simplifying, we could:

$$
\begin{aligned}
9 \frac{\frac{n}{3}\left(\frac{n}{3}+1\right)\left(\frac{2 n}{3}+1\right)}{6}-44 & =\frac{9}{6}\left(\frac{n}{3}\left(\frac{n}{3}+1\right)\left(\frac{2 n}{3}+1\right)\right)-44 \\
& =\frac{1}{2}\left(n\left(\frac{n}{3}+1\right)\left(\frac{2 n}{3}+1\right)\right)-44 \\
& =\frac{1}{2}\left(n\left(\frac{2}{9} n^{2}+n+1\right)\right)-44 \\
& =\frac{1}{9} n^{3}+\frac{1}{2} n^{2}+\frac{1}{2} n-44
\end{aligned}
$$

