
Section 02: Solutions

1. Comparing growth rates

(a) Order each of the following functions from fastest to slowest in terms of asymptotic growth. (By “fastest”, we
mean which function increases the most rapidly as n increases.)

• 2n + 3

• 8n+ 4n2

•
n

2
+ 4

• log4(n) + log2(n)

• 750, 000, 000

Solution:

• 2n + 3

• 8n+ 4n2

•
n

2
+ 4

• log4(n) + log2(n)

• 750, 000, 000

(b) For each of the above expressions, state the simplified tight O bound in terms of n.

Solution:

• O(n)

• O(2n)

• O(n2)

• O(log(n))

• O(1)

2. True or false?

(a) In the worst case, finding an element in a sorted array using binary search is O (n).

(b) In the worst case, finding an element in a sorted array using binary search is Ω(n).

(c) If a function is in Ω(n), then it could also be in O
(
n2

)
.

(d) If a function is in Θ(n), then it could also be in O
(
n2

)
.

(e) If a function is in Ω(n), then it is always in O (n).
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Solution:

The answers are true, false, true, true, and false respectively.

Clarification regarding questions a and b: note that binary search takes log(n) time to complete. log(n) is
upper-bounded by n, so log(n) ∈ O (n). However, log(n) is certainly not lower-bounded by n, which means
logn ∈ Ω(n) is false.

3. Modeling code

For each of the following code blocks, give a summation that represents the worst-case runtime in terms of n.

(a)

int x = 0;

for (int i = 0; i < n; i++) {

for (int k = 0; k < i; k++) {

x++;

}

}

Solution:

One possible solution is

T (n) = 1 +

n−1∑
i=0

i−1∑
k=0

1

(b)

int x = 0;

for (int i = n; i >= 1; i /= 2) {

x += i;

}

Solution:

One possible solution is

T (n) = 1 +

log(n)∑
i=1

1

4. Finding bounds

For each of the following code blocks, construct a mathematical function modeling the worst-case runtime of the
code in terms of n. Then, give a tight big-O bound of your model.

(a) int x = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < n * n / 3; j++) {

x += j;

}

}

Solution:

One possible answer is T (n) = n3

3 . The inner loop performs approximately n2

3 work; the outer loop repeats
that n times.

So the tight worst-case runtime is O
(
n3

)
.

(b) int x = 0;

for (int i = n; i >= 0; i -= 1) {

if (i % 3 == 0) {
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break;

} else {

x += n;

}

}

Solution:

The tightest possible big-O bound is O (1) because exactly one of n, n − 1, or n − 2 will be divisible by
three for all possible values of n. So, the loop runs at most 3 times.

(c) int x = 0;

for (int i = 0; i < n; i++) {

if (i % 5 == 0) {

for (int j = 0; j < n; j++) {

if (i == j) {

x += i * j;

}

}

}

}

Solution:

While the inner-most if statement executes only once per loop, we must check if i == j is true once per
each iteration. This will take some non-zero constant amount of time, so the inner-most loop will perform
approximately n work (setting the constant factors equal to 1, because why not).

The outer-most loop and if statement will perform n work during only 1/5th of the iterations and will
perform a constant amount of work the remaining 4/5ths of the time. So, the total amount work done

is approximately
n

5
· n +

4n

5
· 1. If we simplify, this means we can ultimately model the runtime as

approximately T (n) =
n2

5
+

4n

5
.

Therefore, the tightest worst-case asymptotic runtime will be O
(
n2

)
.

(d) int x = 0;

for (int i = 0; i < n; i++) {

if (n < 100000) {

for (int j = 0; j < n; j++) {

x += 1;

}

} else {

x += 1;

}

}

Solution:

Recall that when computing the asymptotic complexity, we only care about the behavior for large inputs.
Once n is large enough, we will only execute the second branch of the if statement, which means the
runtime of the code can be modeled as just T (n) = n. So, the tightest worst-case runtime is O (n).

(e) int x = 0;
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if (n % 2 == 0) {

for (int i = 0; i < n * n * n * n; i++) {

x++;

}

} else {

for (int i = 0; i < n * n * n; i++) {

x++;

}

}

Solution:

We can model the runtime of this function in the general case as:

Tg(n) =

{
n4 when n is even
n3 when n is odd

However, the prompt was asking you to prove a model for the worst possible case – that is, when n is
even. If we assume n is even, we can produce the following model:

Tw(n) = n4

The tightest worst-case asymptotic runtime is clearly O
(
n4

)
in this case.

Although we have not yet fully talked about big-Ω and big-Θ yet, something interesting to note is that the
general model has differing tight big-O and big-Ω bounds and so therefore has no big-Θ bound.

That is, the best big-O bound we can give for Tg(n) is Tg(n) ∈ O
(
n4

)
; the best big-Ω bound we can give

is Tg(n) ∈ Ω
(
n3

)
. These two bounds (n4 and n3) are different so there is no big-Θ for Tg.

(Important: there is, however, a big-Θ for our simpler model, Tw. That is, Tw(n) ∈ Θ
(
n4

)
.)

5. Applying definitions

For each of the following, choose a c and n0 which show f(n) ∈ O(g(n)). Explain why your values of c and n0

work.

(a) f(n) = 3n+ 4, g(n) = 5n2

Solution:

One possible solution is c =
7

5
and n0 = 1.

First, note that 3n+ 4 ≤ 3n+ 4n = 7n < 7n2 is true for all values of n ≥ 1.

Next, note that 7n2 ≤ c · 5n2 is true for all values of n and when c =
7

5
.

Therefore, we know that 3n+ 4 ≤ c · 5n2 is true for our chosen values of c and n0.

(b) f(n) = 33n3 +
√
n− 6, g(n) = 17n4

Solution:
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One possible solution is c = 2 and n0 = 1.

First, note that 33n3 +
√
n− 6 ≤ 33n3 +

√
n ≤ 33n3 + n3 = 34n3 ≤ 34n4 is true for all values of n ≥ 1.

Next, note that 34n4 ≤ c · 17n2 is true for all values of n and when c = 2.

Therefore, we know that 33n3 +
√
n− 6 ≤ c · 17n4 is true for our chosen values of c and n0.

(c) f(n) = 17 log(n), g(n) = 32n+ 2n log(n)

Solution:

One possible solution is c = 1 and n0 = 2.

We can convince ourselves this is true by examining our inequalities:

17 log(n) ≤ 17n for all n ≥ 1

≤ 34n

= c · 34n since c = 1

= c · (32n+ 2n)

≤ c · (32n+ 2n log(n)) for all n ≥ 2

So, since 17 log(n) ≤ c · (32 + 2n log(n)) is true for our chosen values of c and n0, we know that f(n) ∈
O (2n log(n)).

6. Memory analysis

For each of the following functions, construct a mathematical function modeling the amount of memory used by
the algorithm in terms of n. Then, give a Θ bound of your model.

(a) List<Integer> list = new LinkedList<Integer>();

for (int i = 0; i < n * n; i++) {

list.insert(i);

}

Iterator<Integer> it = list.iterator();

while (it.hasNext()) {

System.out.println(it.next());

}

Solution:

We insert n2 items into our linked list. Each inserted item will create a new node, which uses up a constant
amount of memory. The iterator itself will only view the underlying data, without making a copy.

So, the overall memory usage can be modeled as:

M(n) =

n2−1∑
i=0

c

...where c is the amount of memory used per each node.

This is in Θ
(
n2

)
.
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(b) int[] arr = {0, 0, 0};

for (int i = 0; i < n; i++) {

arr[0]++;

}

Solution:

While we iterate n times, this algorithm only uses up a constant amount of memory. So, the overall
memory usage can be modeled as roughly M(n) = 3c, where c is the amount of memory used by each int
in the array.

This is in Θ(1).

(c) ArrayDictionary<Integer, String> dict = new ArrayDictionary<>();

for(int i = 0; i < n; i++) {

String curr = ””;

for (int j = 0; j < i; j++) {

for (int k = 0; k < j; k++) {

curr += ”?”;

}

}

dict.put(i, curr);

}

Note: for simplicity, assume the dictionary has an internal capacity of exactly n.

Solution:

Note that the two nested loops ultimately construct a string of length
i−1∑
j=0

j−1∑
k=0

c, where c is the amount of

memory used per character.

The code will then insert each string along with the int into the internal array. If we let x represent the
amount of memory used per int, we can model the overall memory usage as:

M(n) =

n−1∑
i=0

x+

i−1∑
j=0

j−1∑
k=0

c


If we apply our summation rules, we can simplify this into:

∑
i = 0n−1

x+

i−1∑
j=0

j−1∑
k=0

c

 =

n−1∑
i=0

x+ c

i−1∑
j=0

j


=

n−1∑
i=0

(
x+ c

i(i− 1)

2

)
= xn+ c

1

6
(n− 2)(n− 1)n

This is in Θ
(
n3

)
.
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7. Analyzing recursive code

For each of the following recurrences, use any of the methods discussed in class to find a Θ bound on the function
in terms of n.

(a) T (n) =

{
1 if n = 0

T (n− 1) + 3 otherwise

Solution:

We first must simplify the function to eliminate the recursion. We can do this by unrolling the recurrence:

T (n) = 3 + T (n− 1) = 3 + (3 + T (n− 2)) = 3 + (3 + . . . (3 + 1))

We repeat the 3 exactly n times. Therefore, we know that T (n) = 3n+ 1 (the +1 is from the base case).

We conclude T (n) ∈ Θ(n).

(b) T (n) =

{
10 if n = 1

T (n/2) + 4 otherwise

Solution:

We can again unroll the recurrences:

T (n) = 4 + T (n/2) = 4 + (4 + T (n/4)) = 4 + (4 + . . . 10)

Because we constantly divide by two, we’ll end up unrolling approximately log2(n) times. So, we know
T (n) ≈ 4 log(n) + 10.

This is in Θ(log(n)).

(c) T (n) =

{
1 if n = 0

T (n/3) + n otherwise

Solution:

We can again unroll the recurrences:

T (n) = n+ T (n/3) = n+
(n
3
+ T (n/9)

)
= n+

(n
3
+ . . . 1

)
Because we constantly divide by three, we’ll end up unrolling approximately log3(n) times. So, we know
T (n) ≈ log3(n) + 1.

This is in Θ(log(n)).

8. Application: Binary Search Trees

Consider the following method, which is a part of a Binary Search Tree class.

public V find(K key) {

return find(this.root, key);
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}

private V find(Node<K, V> current, K key) {

if (current == null) {

return null;

}

if (current.key.equals(key)) {

return current.value;

}

if (current.key.compareTo(key) > 0) {

return find(current.left, key);

} else {

return find(current.right, key);

}

}

(a) We want to analyze the runtime of our find(x) method in the best possible case and the worst possible case.
What does our tree look like in the best possible case? In the worst possible case?

Solution:

In the best possible case, our tree will be completely balanced. In the worst possible case, it will be
completely unbalanced, resembling a linked list.

(b) Write a recurrence to represent the worst-case runtime for find(x) in terms of n, the number of elements
contained within our tree. Then, provide a Θ bound.

Solution:

The recurrence representing the worst-case runtime of find(x) is:

Tw(n) =

{
1 when n = 0

1 + T (n− 1) otherwise

That is, every time we recurse, we are able to eliminate only one node from the span of possibilities we
must consider.

This recurrence is in Θ(n).

(c) Assuming we have an optimally structured tree, write a recurrence for the runtime of find(x) (again in terms
of n). Then, provide a Θ bound.

Solution:

The recurrence representing the best-case runtime of find(x) is:

Tw(n) =

{
1 when n = 0

1 + T (n/2) otherwise

That is, every time we recurse, we are able to eliminate about half of the nodes we must consider.

This recurrence is in Θ(log(n)).
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9. LRU Caching

When writing programs, it turns out to be the case that opening and loading data in files can be a very slow
process. If we plan on reading information from those files very frequently (for example, if we want to implement
a database), what we might want to do is cache the data we loaded from the files – that is, keep that information
in-memory.

That way, if the user requests information already present in our cache, we can return it directly without needing
to open and read the file again.

However, computers have a much smaller amount of RAM then they have hard drive space. This means that our
cache can realistically contain only a certain amount of data. Often, once we run out of space in our cache, we get
rid of the items we used the least recent. We call these caches Least-Recently-Used (LRU) caches.

Discuss how you might apply or adapt the ADTs and data structures you know so far to develop an LRU cache.
Your data type should store the most recently used data, and handle the logic of whether it can find the data in the
cache, or if it needs to read it from the disk. Assume you have a helper function that handles fetching the data from
disk.

Your cache should implement our IDictionary interface and optimize its operations with the LRU caching strategy.
After you’ve decided on a solution, describe the tradeoffs of your structure, possibly including a worst-case and
average-case analysis.

Solution:

We can use two ADTs: a dictionary, which stores each request and the corresponding file data, and a list, which
keeps track of the last n requests made.

Here, we will probably want to use a hashmap (which hasΘ(1) lookup) rather then our ArrayDictionarywhich
has Θ(n) lookup.

Every time somebody makes a request, we search to see if it’s located inside the list. If it is, we remove it and
re-add that request to the very front. If the request is new, we just add it directly to the front.

This will cause the least-frequently made requests to naturally end up near the end of the list. If the list increases
beyond a certain length (beyond our cache size), we’ll remove them from both list and our dictionary.

This makes any lookup in the worst case Θ(n), where n is the size of our cache. However, the most frequently
made requests will be located near the front of the list, which makes their lookup time roughly constant.
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