Quickcheck 02: Solutions

Name:

Definition: Dominated by

A function $f(n)$ is dominated by $g(n)$ when...

- There exists two constants $c>0$ and $n_{0}>0$...
- Such that for all values of $n \geq n_{0} \ldots$
- $f(n) \leq c \cdot g(n)$ is true.

Demonstrate that $2 n^{3}-3+9 n^{2}+\sqrt{n}$ is dominated by n^{3} by finding a c and n_{0}. Show your work.

Solution:

Note that:

$$
\begin{aligned}
2 n^{3}-3+9 n^{2}+\sqrt{n} & \leq 2 n^{3}+9 n^{2}+n & & \text { for all } n \geq 1 \\
& \leq 2 n^{3}+9 n^{3}+n^{3} & & \text { for all } n \geq 1 \\
& =12 n^{3} & &
\end{aligned}
$$

So, one possible choice of n_{0} and c is $n_{0}=1$ and $c=12$.

