iy g T—
Al Fe g W TSy

Dynamic Programming |z

CSE 373 SU 18 — BEN JONES

Announcements

Friday is a guest lecture in GUG 220 - N"f{”‘“}‘ R0 Q thombonfia
Kendra Yourtee will give insider information on tech interviews B
Will not be covered on the final — will be very useful for jobs though! @

Parking Area,N22 %

Grieg Garden

- HUB Yard
Don't go to Gowen Hall on Friday — we won't be there! Sum,fim
Allen Libraries Hilsky Bhion
Bldg (HUB)
Final Homework will be posted tonight! s\

Short (2 question) FINAL REVIEW T B F e ?f A
Due Wed. before final 'Guggenhem wnd,)

Bagley Hall\(BAG)
O
V ‘(;64.(
0)
ho QWOH
®

"on Ln NE

Svlvan Grove

CSE 373 SU 18 — BEN JONES

Goals for Today

3 examples of dynamic programming — the details of the first two are not important — it is
the strategy that | want you to focus on

Learning goal 1. Be able to state the steps of designing a dynamic program
Learning goal 2: Be able to implement the Floyd-Warshall all-shortest-paths algorithm.

Learning goal 3: Given a description of a problem and how it is broken into subproblems,
be able to write a dynamic program to solve the problem.

CSE 373 SU 18 — BEN JONES

Coin Changing Problem (1)

THIS IS A VERY COMMON INTERVIEW QUESTION!

Problem: | have an unlimited set of coins of denomitations w[0], w[1], w[2], ... | need to make
change for W cents. How can | do this using the minimum number of coins?

Example: | have pennies w[0] = 1, nickels w[1] = 5, dimes w[2] = 10, and quarters w[3] = 25,
and | need to make change for 37 cents.

| could use 37 pennies (37 coins), 3 dimes + 1 nickels + 2 pennies (6 coins), but the optimal
solution is 1 quarter + 1 dime + 2 pennies (5 coins).

We want an algorithm to efficiently compute the best solution for any problem instance.

CSE 373 SU 18 — BEN JONES

Step 1: Find the subproblems

What are our subproblems? How do we use them to compute a larger solution?

One way to make the problem “smaller” is to reduce the number of cents we are making
change for.

Let(OPT(W)Ydenote the optimal number of coins to use to make change for W cents.

CSE 373 SU 18 — BEN JONES 5

Step 2: “Characterize the Optimum”

What recurrence relation describes our optimum solution? What are the base cases?

Break the problem into cases. Any non-zero amount will use at least one coin, so we can cover all of our cases by:

1) use at least one penny O@T(53 bPT(S” 10\

2) use at least one nickel

5-1 o
Ftc ek ome

) use at least one of wii]

So in the i'th case, if OPT(W) uses wli], then/OPT(W) |= OPT(@ — w|||z +1

or overall: OPT(W) = min{ OPT(W —w[1]) + 1, OPT(W —w[2]) + 1, ... OPT(W —w[m]) + 1} ODT C’b>
- o —_—
For our base cases, we know that it takes O coins to make change for 0 cents:

OPT(0) =0 0 VQ
’__‘___,—_/

We also know that it is impossible to make negative change

OPT(n) = infinity forn < 0

/

CSE 373 SU 18 — BEN JONES

6

Step 3: Order the Subproblems

We have characterized our optimum solution:

(o0 if wW<o

OPT(W) = {0 if W=20
\m_in OPT(1 otherwise
l

What order do we solve these in?

Notice that the recursive case depends only on smaller values of W.

Therefore we can solve from smallest to largest: from 1to W

CSE 373 SU 18 — BEN JONES 7

Step 4: Write the algorithm

change(W, wl]): // w[] has length n

~ T —
1 OPT = new armayw + 1]
WPT[O] = (0 J/ Base case

fori=1toW:

W Base case — since index < 0, used a conditional instead
forj=0ton:
(= w[)]) >§é“}& O(E[i —w[j]] + 1 < best: 7

Mest = OPTIi - wijll + 1_\
\ OPTIi] = best |

return OPT[W] \

CSE 373 SU 18 — BEN JONES 8

Which coins did we use?

This algorithm only tells us how many coins we need to use, not which coins they were.

Each time we found OPT(k), we made a choice about which coin we were adding (see why)?

The coin we “removed” to find the best subproblem in the top-down view is a coin "added” when viewed
bottom-up.

Idea: Use a second array to keep track of which coins we are adding!

CSE 373 SU 18 — BEN JONES 9

Step 5: Tracking Coins

change(W, w[]): // w[] has length n WB
OPT = new array[W + 1] ‘} 6\5 / (><'

coins = new array[W+1

coins[0] =
OPT[0] = 0 L \,\])
'@
fori=tow. &~ W @
best = infinity

i bestCoin = -1 l ‘

forj=0ton: & -

if (i —w[j]) >= 0 && OPT[i—w[j]] + 1 < best: OC\>

best = OPT[i —w[j]] + 1

OPTIi] = best

return coins

CSE 373 SU 18 — BEN JONES 10

Coin changing problem (2)

Same setup: How many different ways are there of making change? (Counting problem)

This time we'll need both size variables — the amount of change to make, and the coins
available:

OPT(W, k) 1= The number of ways to make change for W, using only the first k coin types

=

Eg. if w0] = pennies, w[1] = nickels, w[2] = dimes, and w[3] = quarters,
R B o

oPT (1%, 1)
OPT(12,@ = 3; the number of ways to make 12 cents using only pennies and nickels

CSE 373 SU 18 — BEN JONES i

Characterizing the Optimum 27 .0

Y w3 CF
For our base cases, we know that there is only one way to make 0 cents (no coins): ,(’-)‘),13*
27,32 © 2)4
OPT(, k) = 1forallk (27, Opff") Sy
There are 0 ways to make change with 0 coins (for non-zero amounts of change): OPT(F"/)
OPT(W,0) = 0 for all W I= 0 om 7,
dii

Recursive Case: If we are making change with the first k coin types, we can use the k'th type of coin 0
times, 1time, 2 times, ..., up toQ/V / w[k-1] times (remember the k'th coin is w[k-1]).

A
The remainder of the money needs to p of the other coin types, so we have
[__W_ H O[N/W"
(_-—f‘
OPT(W, k) = OPT(W —[i} m] k—1) R
e W/

=0

W CSE 373 SU 18 — BEN JONES 12

Ordering the Subproblems

We now have 2 variables, W and k, so our array will be 2D:

W =20 T

2

3
3

KK
xRK -

R

x

x

w
wlk

l
OPT(W, k) =

17!

1=

OPT(W —
0

i-wlk—-1,k—-1)
L’

CSE 373 SU 18 — BEN JONES 13

Algorithm

changeCounting(W, w[]): // w[] has length m

OPT[I[] = new int(l[] gl >

OPT[O0][k] = O for all k__ o PT E\p} olz,l A all W O(W\ \N

fork =1..m: & — [ﬁb_? opa C # 4140”‘5— (- J\
forn=1.W: &— ‘vo{’ Ve Kol CQV\% #é[“‘vrwor

GumWays;? /a8 GCW?

ori= 0. W/wik: & _
numWays += OPT[n — i*w[k-1], k-1]

OPT[n, k] = numWays

LLetu rn OPT(W, rrl),J / —

\l - CSE 373 SU 18 — BEN JONES 14

All Shortest Paths

Given a graph G, find the length of the shortest path between every pair of vertices.
Looks |i|<: length of shortest path from v; to v;

How to break this into smaller problems?

Borrow a trick from the last example: introduce a restriction:

OPT@]J) .= length of shortest path from v; to v; using only the first k vertices as
intermediate nodes (vy, V1, Vg, «v) Vi —1)

CSE 373 SU 18 — BEN JONES 15

. QO
b, >~

Characterizing OPT 32

OPT(k,i,j) := shortest path from i to j using only first k vertices in between

| K=5
&),

S

(5J'> wslhs

What is OPT@ 0, 4) for this graph? What path does it correspond to?

OPT(3, 0, 4) = 9 since we can't use 3 as an intermediate node.

CSE 373 SU 18 — BEN JONES 16

Characterizing OPT

OPT(k,i,j) := shortest path from i to j using only first k vertices in between

Observation: OPT(k,i,j) either uses the k'th vertex, or it doesn't:

/_\

OPT(k,ij) = min {{OPT(k-1\i,)) I, COPTK-T, i, k) + OPT(k-1, k, j)

CSE 373 SU 18 — BEN JONES

17

Characterizing OPT

OPT(k,i,j) = min {OPT(k-1, 1, j), OPT(k-1, i, k) + OPT(k-1, k, J) }
Base cases?

The path from a vertex to itself has length O:
OPT(k,i,i)=0

A path with no intermediate vertices is only possible if the edge i->j exists:

OPT(0, i, j) = wy; if i->] exists, otherwise oo

CSE 373 SU 18 — BEN JONES 18

Ordering the Subproblems

0 if i =]
OPT(k,i,j) = { w;jif k=0 (assume w;; is © if no edge)
Kmin{ PT(k — 1, i,j),]QPT(k — 1,1, k’ +L0PT(k: 1, k,j)_] otherwise

What order should we use?

Q: Which subproblems do we depend on in the recursive case?
A: Lower values of k, and the same values of i and j, K

So if we order our subproblems in increasing order of k, we will always have the
subproblems we need solved!

OPTIMIZATION: Since we only use one lower k value, we can re-use the same array for each
iteration of k.

CSE 373 SU 18 — BEN JONES 19

Floyd-Warshall Algorithm

shortestPaths(G):

let d[][] be a |V|x|V| matrix
‘)ﬁﬂ]ﬁ = w(ij) or infinity if no edge (w(i,i) = 0 for all i)
fori=0 ..]V[-T ’\”
if (il + dikigl < i

]
diil[jl = dlillk] + d[k][]]

return d

CSE 373 SU 18 — BEN JONES 20

Path Reconstruction

shortestPaths(G):
let d[][] be a |V|x|V| matrix
let path[][] be a |V|x|V| matrix initialized to -1s
d[il{j] = w(i,j) or infinity if no edge (w(i,i) = 0 for all i)

for k=0 .. |V|-1:
fori=0..|V|[-T
forj =0..|V|-1
it (di][j] + dIkI[j] < dhlljl):
dil[j] = d[il[k] + d[Kk][}]

path[i][j] = k
return d

CSE 373 SU 18 — BEN JONES 22

