
Dynamic Programming Data Structures and

Algorithms

CSE 373 SU 18 – BEN JONES 1

Announcements

Friday is a guest lecture in GUG 220
- Kendra Yourtee will give insider information on tech interviews

- Will not be covered on the final – will be very useful for jobs though!

- Don’t go to Gowen Hall on Friday – we won’t be there!

Final Homework will be posted tonight!
- Short (2 question) FINAL REVIEW

- Due Wed. before final

CSE 373 SU 18 – BEN JONES 2

Goals for Today

3 examples of dynamic programming – the details of the first two are not important – it is
the strategy that I want you to focus on

Learning goal 1: Be able to state the steps of designing a dynamic program

Learning goal 2: Be able to implement the Floyd-Warshall all-shortest-paths algorithm.

Learning goal 3: Given a description of a problem and how it is broken into subproblems,
be able to write a dynamic program to solve the problem.

CSE 373 SU 18 – BEN JONES 3

Coin Changing Problem (1)

THIS IS A VERY COMMON INTERVIEW QUESTION!

Problem: I have an unlimited set of coins of denomitations w[0], w[1], w[2], … I need to make
change for W cents. How can I do this using the minimum number of coins?

Example: I have pennies w[0] = 1, nickels w[1] = 5, dimes w[2] = 10, and quarters w[3] = 25,
and I need to make change for 37 cents.

I could use 37 pennies (37 coins), 3 dimes + 1 nickels + 2 pennies (6 coins), but the optimal
solution is 1 quarter + 1 dime + 2 pennies (5 coins).

We want an algorithm to efficiently compute the best solution for any problem instance.

CSE 373 SU 18 – BEN JONES 4

Step 1: Find the subproblems

What are our subproblems? How do we use them to compute a larger solution?

One way to make the problem “smaller” is to reduce the number of cents we are making
change for.

Let OPT(W) denote the optimal number of coins to use to make change for W cents.

CSE 373 SU 18 – BEN JONES 5

Step 2: “Characterize the Optimum”

What recurrence relation describes our optimum solution? What are the base cases?

Break the problem into cases. Any non-zero amount will use at least one coin, so we can cover all of our cases by:

1) use at least one penny

2) use at least one nickel

Etc.

i) use at least one of w[i]

So in the i’th case, if OPT(W) uses w[i], then OPT(W) = OPT(W – w[i]) + 1

or overall: OPT(W) = min{ OPT(W – w[1]) + 1, OPT(W – w[2]) + 1, … OPT(W – w[m]) + 1}

For our base cases, we know that it takes 0 coins to make change for 0 cents:

OPT(0) = 0

We also know that it is impossible to make negative change

OPT(n) = infinity for n < 0

CSE 373 SU 18 – BEN JONES 6

Step 3: Order the Subproblems

We have characterized our optimum solution:

𝑂𝑃𝑇 𝑊 = ൞

∞ 𝑖𝑓 𝑊 < 0
0 𝑖𝑓 𝑊 = 0

min
𝑖
𝑂𝑃𝑇 𝑊 −𝑤 𝑖 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

What order do we solve these in?

Notice that the recursive case depends only on smaller values of W.

Therefore we can solve from smallest to largest: from 1 to W

CSE 373 SU 18 – BEN JONES 7

Step 4: Write the algorithm

change(W, w[]): // w[] has length n

OPT = new array[W + 1]

OPT[0] = 0

for i = 1 to W:

best = infinity

for j = 0 to n:

if (i – w[j]) >= 0 && OPT[i – w[j]] + 1 < best:

best = OPT[i – w[j]] + 1

OPT[i] = best

return OPT[W]

CSE 373 SU 18 – BEN JONES 8

// Base case

Base case – since index < 0, used a conditional instead

Which coins did we use?

This algorithm only tells us how many coins we need to use, not which coins they were.

Each time we found OPT(k), we made a choice about which coin we were adding (see why)?
- The coin we “removed” to find the best subproblem in the top-down view is a coin “added” when viewed

bottom-up.

Idea: Use a second array to keep track of which coins we are adding!

CSE 373 SU 18 – BEN JONES 9

Step 5: Tracking Coins

change(W, w[]): // w[] has length n

OPT = new array[W + 1]

coins = new array[W+1]

coins[0] = -1

OPT[0] = 0

for i = 1 to W:

best = infinity

bestCoin = -1

for j = 0 to n:

if (i – w[j]) >= 0 && OPT[i – w[j]] + 1 < best:

best = OPT[i – w[j]] + 1

bestCoin = j

OPT[i] = best

coins[i] = bestCoin

return coins

CSE 373 SU 18 – BEN JONES 10

Coin changing problem (2)

Same setup: How many different ways are there of making change? (Counting problem)

This time we’ll need both size variables – the amount of change to make, and the coins
available:

OPT(W, k) := The number of ways to make change for W, using only the first k coin types

e.g. if w[0] = pennies, w[1] = nickels, w[2] = dimes, and w[3] = quarters,

OPT(12, 2) = 3; the number of ways to make 12 cents using only pennies and nickels

CSE 373 SU 18 – BEN JONES 11

Characterizing the Optimum

For our base cases, we know that there is only one way to make 0 cents (no coins):

OPT(0, k) = 1 for all k

There are 0 ways to make change with 0 coins (for non-zero amounts of change):

OPT(W,0) = 0 for all W != 0

Recursive Case: If we are making change with the first k coin types, we can use the k’th type of coin 0
times, 1 time, 2 times, …, up to W / w[k-1] times (remember the k’th coin is w[k-1]).

The remainder of the money needs to be made up of the other coin types, so we have

OPT(W, k) = ෍

𝑖=0

⌊
𝑊

𝑤 𝑘−1
⌋

𝑂𝑃𝑇(𝑊 − 𝑖 ⋅ 𝑤 𝑘 − 1 , 𝑘 − 1)

CSE 373 SU 18 – BEN JONES 12

Ordering the Subproblems

We now have 2 variables, W and k, so our array will be 2D:

CSE 373 SU 18 – BEN JONES 13

1 0 0 0

1

1

1

1

1

0 0 0 0

W = 0 1 2 …

k = 0

1

2

…

OPT(W, k) = ෍

𝑖=0

⌊
𝑊

𝑤 𝑘−1
⌋

𝑂𝑃𝑇(𝑊 − 𝑖 ⋅ 𝑤 𝑘 − 1 , 𝑘 − 1)

Subproblems depended

on only have smaller W

and k values

OPT(W,k)

Algorithm

changeCounting(W, w[]): // w[] has length m

OPT[][] = new int[][]

OPT[0][k] = 0 for all k

for k = 1…m:

for n = 1…W:

numWays = 0

for i = 0… W / w[k-1]:

numWays += OPT[n – i*w[k-1], k-1]

OPT[n, k] = numWays

return OPT(W, m)

CSE 373 SU 18 – BEN JONES 14

All Shortest Paths

Given a graph G, find the length of the shortest path between every pair of vertices.

Looks like OPT(i,j) := length of shortest path from 𝑣𝑖 to 𝑣𝑗

How to break this into smaller problems?

Borrow a trick from the last example: introduce a restriction:

OPT(k,i,j) := length of shortest path from 𝑣𝑖 to 𝑣𝑗 using only the first k vertices as
intermediate nodes (𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘−1)

CSE 373 SU 18 – BEN JONES 15

Characterizing OPT

OPT(k,i,j) := shortest path from i to j using only first k vertices in between

What is OPT(3, 0, 4) for this graph? What path does it correspond to?

OPT(3, 0, 4) = 9 since we can’t use 3 as an intermediate node.

CSE 373 SU 18 – BEN JONES 16

Characterizing OPT

OPT(k,i,j) := shortest path from i to j using only first k vertices in between

Observation: OPT(k,i,j) either uses the k’th vertex, or it doesn’t:

OPT(k,i,j) = min { OPT(k-1, i, j) , OPT(k-1, i, k) + OPT(k-1, k, j) }

CSE 373 SU 18 – BEN JONES 17

Characterizing OPT

OPT(k,i,j) = min {OPT(k-1, i, j) , OPT(k-1, i, k) + OPT(k-1, k, j) }

Base cases?

The path from a vertex to itself has length 0:

OPT(k, i, i) = 0

A path with no intermediate vertices is only possible if the edge i->j exists:

OPT(0, i, j) = 𝑤𝑖𝑗 if i->j exists, otherwise ∞

CSE 373 SU 18 – BEN JONES 18

Ordering the Subproblems

𝑂𝑃𝑇 𝑘, 𝑖, 𝑗 = ൞

0 𝑖𝑓 𝑖 = 𝑗
𝑤𝑖𝑗 𝑖𝑓 𝑘 = 0 (𝑎𝑠𝑠𝑢𝑚𝑒 𝑤𝑖𝑗 𝑖𝑠 ∞ 𝑖𝑓 𝑛𝑜 𝑒𝑑𝑔𝑒)

min{ 𝑂𝑃𝑇 𝑘 − 1, 𝑖, 𝑗 , 𝑂𝑃𝑇 𝑘 − 1, 𝑖, 𝑘 + 𝑂𝑃𝑇 𝑘 − 1, 𝑘, 𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

What order should we use?

Q: Which subproblems do we depend on in the recursive case?

A: Lower values of k, and the same values of i and j

So if we order our subproblems in increasing order of k, we will always have the
subproblems we need solved!

OPTIMIZATION: Since we only use one lower k value, we can re-use the same array for each
iteration of k.

CSE 373 SU 18 – BEN JONES 19

Floyd-Warshall Algorithm

shortestPaths(G):

let d[][] be a |V|x|V| matrix

d[i][j] = w(i,j) or infinity if no edge (w(i,i) = 0 for all i)

for k=0 ... |V| - 1 :

for i = 0 … |V| - 1:

for j = 0 … |V| - 1:

if (d[i][j] + d[k][j] < d[i][j]):

d[i][j] = d[i][k] + d[k][j]

return d

CSE 373 SU 18 – BEN JONES 20

Example

CSE 373 SU 18 – BEN JONES 21

Path Reconstruction

shortestPaths(G):

let d[][] be a |V|x|V| matrix

let path[][] be a |V|x|V| matrix initialized to -1s

d[i][j] = w(i,j) or infinity if no edge (w(i,i) = 0 for all i)

for k=0 ... |V| - 1 :

for i = 0 … |V| - 1:

for j = 0 … |V| - 1:

if (d[i][j] + d[k][j] < d[i][j]):

d[i][j] = d[i][k] + d[k][j]

path[i][j] = k

return d

CSE 373 SU 18 – BEN JONES 22

