

# Dynamic Programming 

Data Structures and Algorithms

## Announcements

Friday is a guest lecture in GUG 220

- Kendra Yourtee will give insider information on tech interviews Will not be covered on the final - will be very useful for jobs though! Don't go to Gowen Hall on Friday - we won't be there!

Final Homework will be posted tonight!
Short (2 question) FINAL REVIEW
Due Wed. before final


## Goals for Today

3 examples of dynamic programming - the details of the first two are not important - it is the strategy that I want you to focus on

Learning goal 1: Be able to state the steps of designing a dynamic program

Learning goal 2: Be able to implement the Floyd-Warshall all-shortest-paths algorithm.

Learning goal 3: Given a description of a problem and how it is broken into subproblems, be able to write a dynamic program to solve the problem.

## Coin Changing Problem (1)

## THIS IS A VERY COMMON INTERVIEW QUESTION!

Problem: I have an unlimited set of coins of denomitations w[0], w[1],w[2], ... I need to make change for W cents. How can I do this using the minimum number of coins?

Example: I have pennies $w[0]=1$, nickels $w[1]=5$, dimes $w[2]=10$, and quarters $w[3]=25$, and I need to make change for 37 cents.

I could use 37 pennies ( 37 coins), 3 dimes +1 nickels +2 pennies ( 6 coins), but the optimal solution is 1 quarter +1 dime +2 pennies ( 5 coins).
We want an algorithm to efficiently compute the best solution for any problem instance.

## Step 1: Find the subproblems

What are our subproblems? How do we use them to compute a larger solution?

One way to make the problem "smaller" is to reduce the number of cents we are making change for.

Let $\widehat{\mathrm{OPT}(\mathrm{W})}$ denote the optimal number of coins to use to make change for W cents.

## Step 2: "Characterize the Optimum"

What recurrence relation describes our optimum solution? What are the base cases?

Break the problem into cases. Any non-zero amount will use at least one coin, so we can cover all of our cases by:

1) use at least one penny
2) use at least one nickel



$O \operatorname{OP}(4)+1$


So in the isth case, if OPT $(W)$ uses $w[i]$, then $O P T(W)=O P T(W-W[i])+1$ or overall: $\operatorname{OPT}(W)=\min \{\operatorname{OPT}(W-w[1])+1, \operatorname{OPT}(W-w[2])+1, \ldots \operatorname{OPT}(W-w[m])+1\}$
For our base cases, we know that it takes 0 coins to make change for 0 cents:
$\operatorname{OPT}(0)=0$
We also know that it is impossible to make negative change
$\operatorname{OPT}(\mathrm{n})=$ infinity for $\mathrm{n}<0$

## Step 3: Order the Subproblems

We have characterized our optimum solution:
$\operatorname{OPT}(W)=\left\{\begin{array}{lr}\infty & \text { if } W<0 \\ 0 & \text { if } W=0 \\ \min _{i} O P T(--w[i])+\text { otherwise }\end{array}\right.$
What order do we solve these in?
Notice that the recursive case depends only on smaller values of W.
Therefore we can solve from smallest to largest: from 1 to W

## Step 4: Write the algorithm

change(W, w[]): // w[] has length $n$


## Which coins did we use?

This algorithm only tells us how many coins we need to use, not which coins they were.

Each time we found $\operatorname{OPT}(\mathrm{k})$, we made a choice about which coin we were adding (see why)?
-The coin we "removed" to find the best subproblem in the top-down view is a coin "added" when viewed bottom-up.

Idea: Use a second array to keep track of which coins we are adding!

Step 5: Tracking Coins


## Coin changing problem (2)

Same setup: How many different ways are there of making change? (Counting problem)

This time we'll need both size variables - the amount of change to make, and the coins available:

OPT (W, k):= The number of ways to make change for $W$, using only the first $k$ coin types e.g. if $w[0]=$ pennies, $w[1]=$ nickels, $w[2]=$ dimes, and $w[3]=$ quarters, OPT $(12,2)$
$\operatorname{OPT}(12,2)=3$; the number of ways to make 12 cents using only pennies and nickels

## Characterizing the Optimum 37

 For our base cases, we know that there is only one way to make 0 cents (no coins): $\operatorname{OPT}(0, k)=1$ for all $k$ $\qquad$ $\begin{array}{lll}\text { There are } 0 \text { ways to make change with } 0 \text { coins (for non-zero amounts of change): } & \text { OPt } 27,2)+2 \\ O P(17,2)+\end{array}$ $\operatorname{OPT}(\mathrm{W}, 0)=0$ for all $\mathrm{W}!=0$Recursive Case: If we are making change with the first $k$ coin types, we can use the $k$ 'th type of coin 0 times, 1 time, 2 times, $\ldots$, up to $L W / w[k-1]$ times (remember the $k^{\prime}$ th coin is $w[k-1]$ ).

The remainder of the money needs to be made up of the other coin types, so we have


## Ordering the Subproblems

We now have 2 variables, $W$ and $k$, so our array will be 2D:


Algorithm
changeCounting(W, w[]): // w[] has length m

$$
\begin{aligned}
& \text { OPT[][] = new int[][] } \\
& \text { OPT[0][k] = } 0 \text { for all } k \\
& \text { OPT }[\omega, 0]=1 \text { for all } \omega \\
& O\left(m W^{2}\right) \\
& \text { for } k=1 \ldots \mathrm{~m}: \quad \text { loop cher \#of coins, } n \\
& \text { for } n=1 \ldots W \text { : loop over } \notin \text { of cents } \\
& \text { numWays }=0 \\
& o(w) \\
& \text { for } i=0 \ldots . W / w[k-1] \text { : } \\
& \text { numWays }+=\text { OPT }[n-i * w[k-1], k-1] \\
& \text { OPT[n,k] = numWays } \\
& \text { return OPT(W, m) }
\end{aligned}
$$

## All Shortest Paths

Given a graph G, find the length of the shortest path between every pair of vertices.

Looks like $\overline{\mathrm{OPT}(\mathrm{i}, \mathrm{i})}=$ length of shortest path from $v_{i}$ to $v_{j}$

How to break this into smaller problems?

Borrow a trick from the last example: introduce a restriction:

OPT(k) $\mathrm{i}, \mathrm{j}):=$ length of shortest path from $v_{i}$ to $v_{j}$ using only the first k vertices as intermediate nodes $\left(v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}\right)$

## Characterizing OPT

OPT (k,i,j) := shortest path from i to fusing only first $k$ vertices in between


$$
K=3
$$



What is OPT $(3,0,4)$ for this graph? What path does it correspond to?
$\operatorname{OPT}(3,0,4)=9$ since we cant use 3 as an intermediate node.

## Characterizing OPT

OPT $(k, i, j):=$ shortest path from i to j using only first k vertices in between

Observation: OPT(k,i,j) either uses the k'th vertex, or it doesn't:


## Characterizing OPT

$\operatorname{OPT}(k, i, j)=\min \{O P T(k-1, i, j), \operatorname{OPT}(k-1, i, k)+\operatorname{OPT}(k-1, k, j)\}$

Base cases?

The path from a vertex to itself has length 0 :

$$
\operatorname{OPT}(k, i, i)=0
$$

A path with no intermediate vertices is only possible if the edge $i->j$ exists:

$$
\mathrm{OPT}(0, \mathrm{i}, \mathrm{j})=w_{i j} \text { if } \mathrm{i}->\mathrm{j} \text { exists, otherwise } \infty
$$

## Ordering the Subproblems


What order should we use?
Q: Which subproblems do we depend on in the recursive case?
A: Lower values of $k$, and the same values of $i$ and $j$, $K$

So if we order our subproblems in increasing order of $k$, we will always have the subproblems we need solved!

OPTIMIZATION: Since we only use one lower $k$ value, we can re-use the same array for each iteration of $k$.

## Floyd-Warshall Algorithm



Example


## Path Reconstruction

shortestPaths(G):
let d[][] be a $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix
let path[][] be a $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix initialized to -1 s
$d[i][j]=w(i, j)$ or infinity if no edge $(w(i, i)=0$ for all i)

```
for k=0 ... |V| - 1:
    for i = 0 ... |V| - 1:
        for j = 0 ... |V| - 1:
        if (d[i][j] + d[k][j] < d[i][j] ):
            d[i][j] = d[i][k] + d[k][j]
            path[i][j] = k
return d
```

