
Dynamic Programming Data Structures and 

Algorithms
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Warmup

Find a minimum spanning tree for the following graph:
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With Kruskal’s Algorithm

Find a minimum spanning tree for the following graph:
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With Primm’s Algorithm

Find a minimum spanning tree for the following graph:
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Dynamic Programming
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When the greedy approach fails.



Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, …

fib(n) = fib(n-1) + fib(n-2)

fib(0) = fib(1) = 1
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Fibonacci Numbers

public int fib(int i) {

int result;

if (i < 2) {

result = 1;

} else {

result = fibonacci(i - 1) + fibonacci(i - 2);

}

return result;

}

What is the runtime of this algorithm?
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Fibonacci Numbers

fib(10)

fib(9)                                         fib(8)

fib(8)               fib(7)                  fib(7)              fib(6)

fib(7)     fib(6)     fib(6)    fib(5)     fib(6)    fib(5)    fib(5)       fib(4)
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Fibonacci Numbers: By Hand

We did this by hand in much less than exponential time. How?

We looked up previous results in the table, re-using past computation.

Big Idea: Keep an array of sub-problem solutions, use it to avoid re-computing results!
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Memoization

Memoization is storing the results of a deterministic function in a table to use later:

If f(n) is a deterministic function (from ints to ints):

memo = Integer [N] // N is the biggest input we care about

memoized_f(n) {
if (memo[n] == null) {

memo[n] = f(n);

}

return memo[n];

}
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Memoized Fibonacci

memo = int[N]; // initialized to all 0s – use as sentinels since fib(n) > 0 for all n

public int fib(int i) {

if (memo[i] <= 0) {

if (i < 2) {

memo[i] = 1;

} else {

memo[i] = fib(i - 1) + fib(i - 2);

}

}

return memo[i]

}
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Dynamic Programming

Breaking down a problem into smaller subproblems that are more easily solved.

Differs from divide and conquer in that subproblem solutions are re-used (not independent)
- Ex: Merge sort:

Memoization is such a problem is sometimes called “top-down” dynamic programming.

If this is top-down, what is bottom up?

CSE 373 SU 18 – BEN JONES 12



Top Down Evaluation

Which order to we call fib(n) in?

Which order are the table cells filled in?

In bottom-up dynamic programming (sometimes just called dynamic programming), we 
figure out ahead of time what order the table entries need to be filled, and solve the 
subproblems in that order from the start!

CSE 373 SU 18 – BEN JONES 13

0 1 2 3 4 5 6 7 8 9 10 11 12n

fib(n)



Fibonacci – Bottom Up

public int fib(int n) {

fib = new int[n];

fib[0] = fib[1] = 1; 

for (int i = 2; i < n; ++i) {

fib[i] = fib[i - 1] + fib[i - 2];

}

return fib[n];

}
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// Loop order is important: non-base cases in order of fill

// Base cases: pre-fill the table

// Recursive case: looks just like a recurrence

Pros: Cons

Runs faster

Won’t build up a huge call stack

Easier to analyze runtime

More difficult to write



An Optimization

We only ever need the previous two results, so we can throw out the rest of the array.

public int fib(int n) {

fib = new int[2];

fib[0] = fib[1] = 1; 

for (int i = 2; i < n; ++i) {

fib[i % 2] = fib[0] + fib[1];

}

return fib[n%2];

}

Now we can solve for arbitrarily high Fibonacci numbers using finite memory!
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Another Example

Here’s a recurrence you could imagine seeing on the final. What if you want to numerically 
check your solution?
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Recursively

public static double eval(int n) {

if (n == 0 ) {

return 1.0;

} else {

double sum = 0.0;

for (int i = 0; i < n; i++) {

sum += eval( i );

return 2.0 * sum / n + n;

}

}
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What does the call tree look like for this?

With your neighbor: Try writing a bottom-up dynamic 

program for this computation.



With Dynamic Programming
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With Dynamic Programming

public static double eval( int n ) {

double[] c = new double[n + 1]; // n + 1 is pretty common to allow a 0 case

c[0] = 1.0;

for (int i = 1; i <= n; ++i) { // Loop bounds in DP look different, not always 0 < x < last

double sum = 0.0;

for (int j = 0; j < i; j++) {

sum += c[ j];

}

c[i] = 2.0 * sum / i + i;

}

return c[n];

}
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Where is Dynamic Programming Used

These examples were a bit contrived.

Dynamic programming is very useful for optimization problems and counting problems.
- Brute force for these problems is often exponential or worse. DP can often achieve polynomial time.

Examples:

How many ways can I tile a floor?

How many ways can I make change? *

What is the most efficient way to make change? *

Find the best insertion order for a BST when lookup probabilities are known.

All shortest paths is a graph. *
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Coin Changing Problem (1)

THIS IS A VERY COMMON INTERVIEW QUESTION!

Problem: I have an unlimited set of coins of denomitations w[0], w[1], w[2], … I need to make 
change for W cents. How can I do this using the minimum number of coins?

Example: I have pennies w[0] = 1, nickels w[1] = 5, dimes w[2] = 10, and quarters w[3] = 25, 
and I need to make change for 37 cents.

I could use 37 pennies (37 coins), 3 dimes + 1 nickels + 2 pennies (6 coins), but the optimal 
solution is 1 quarter + 1 dime + 2 pennies (5 coins).

We want an algorithm to efficiently compute the best solution for any problem instance.
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