

Minimum Spanning Trees
 Data Structures and Algorithms

Announcements

- Project 3 Due Tonight
- Project 4 Assigned Today

Same partners as project 3
We will re-run project 3 grading on project 4, just like the checkpoint from project 1 (this is why you are keeping your partners)
If you are curious about the missing part2 of this project, look at last quarter's website (change 18su to 18sp in the web address)

Goal for today: Learn the algorithm you will be implementing in project 4.

Review: Minimum Spanning Trees

Spanning Tree - A subtree of a graph that spans (includes) all of the vertices

- connected
- acyclic

Review: Minimum Spanning Trees

Spanning Tree - A subtree of a graph that spans (includes) all of the vertices

- connected
- acyclic

Review: Minimum Spanning Trees

Spanning Tree - A subtree of a graph that spans (includes) all of the vertices

- connected
- acyclic

Review: Minimum Spanning Trees

Spanning Tree - A subtree of a graph that spans (includes) all of the vertices

- connected
- acyclic

Review: Minimum Spanning Trees

Minimum Spanning Tree - The lowest weight subtree of a graph that spans (includes) all of the vertices.

Review: Minimum Spanning Trees

Minimum Spanning Tree - The lowest weight subtree of a graph that spans (includes) all of the vertices.

- A graph can have more than one

How Do We Find One?

Discuss with your neighbors - how could we try to find the minimum spanning tree?

- Modi fy Dijkstra's Alg - only find a tree
- Topo Sort?

Greedy Algorithms

Strategy: Take the best we can get right now, ignoring long-term optimality.

- Usually fast to implement

Does not always get the "best" result
But often is "good enough"

Does a greedy approach work for MST?

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we have $n-1$ edges.

Does this always work?

Proof Sketch: (you don't need to remember this - just remember greedy algorithms don't always find the optimum solution, but this one does).

At every step we have a forest (never add edges that make a cycle).
At the end, we have a spanning tree (an acyclic graph with $n-1$ edges can only be a tree with $|V|=n$).

Suppose we found T, and T^{*} is a minimum spanning tree. If we repeatedly swap in the smallest edge we didn't pick from T^{*}, we will eventually transform our tree into T^{*}. No swap will ever increase the weight of our tree, since we picked edges in order from smallest to largest.
So T is at least as small as T^{*}.

To really prove this, use induction! (See CSE 417/421)

Kruskal's Algorithm

```
Kruskal(G = (V, E)):
queue = priorityQueue(E) O(|E|) - Floyd's Build-Heap
mst = empty list O(1)
while (size(mst) < |V| - 1): At most|E| iterations
    e = queue.deleteMin() O(log |E|)
    if adding e would not create a cycle: ??? O(|V|+|E|) - DFS from section
    mst.add(e) O(1)
return mst
```

$\boldsymbol{O}\left(|\boldsymbol{E}|^{2}\right)$ Can we do better?

A Criteria for Cycle Checking

Observation: An edge will create a cycle if and only if both endpoints are in the same connected component.

Strategy: Build a data structure that can quickly answer sameCC(A, B).

Properties of sameCC(A, B)

Recall: A is in the same connected component as B if and only if there is a path from A to B

- $\operatorname{sameCC}(\mathrm{A}, \mathrm{A})=$ True
- There is always a (trivial) path from a vertex to itself
- $\operatorname{sameCC}(A, B)=\operatorname{sameCC}(B, A)$
- Reversing a path from A to B makes a path from B to A
- If sameCC($A, B)$ and $\operatorname{sameCC}(B, C)$, then sameCC($A, C)$
- Can join a path from A to B to a path from B to C, yielding a path from A to C

REFLEXIVITY
SYMMETRY

TRANSITIVITY

In mathematics, we call anything with these properties and equivalence relation.

Equivalence Relations

Equivalence Relation: A binary relation (boolean valued function with two arguments of the same type) that is reflexive, symmetric, and transitive.

Namesake: Equals (==)

$$
\begin{array}{ll}
-A==A & \\
-A=B \Leftrightarrow B==A & \text { (reflexive) } \\
-A=B \text { and } B==C \rightarrow A==C & \text { (transitive) }
\end{array}
$$

The collection of all objects that are equivalent under an equivalence relation is called an equivalence class.
Connected components are equivalence classes under "sameCC" (i.e. pathExists(A,B))

A Datastructure for Equivalence Classes

Main Idea: Link together elements in an equivalence class, pointing towards a representative element.

A Datastructure for Equivalence Classes

Notice: Equivalence classes are disjoint - they don't share elements. They also cover the entire set of objects - each object is contained in an equivalence class.

ADT: Disjoint Sets

Requirements:

- Keeps track of which set each element is in
- Dynamic: can combine sets (union)
- Online: can find the set an element is in on-the-fly (and then continue modifying)

ADT: Disjoint Sets

- union (A, B) - Joins together the sets which A and B belong to
- find(A) - finds a representative element for the set that A is in
- [constructor - all elements start in their own separate disjoint set]

Find

Find: Return the representative element of an element's set. Example: find(D)

Find

Find: Return the representative element of an element's set. Example: find(D)

Find

Find: Return the representative element of an element's set. Example: find(D)

Find

Find: Return the representative element of an element's set. Example: find(D)

A Datastructure for Equivalence Classes

Find: Return the representative element of an element's set. Example: find(D)

Find

Find: Return the representative element of an element's set. Example: find $(D)=G$

Union

Union: Combine two disjoint sets. Example: Union(D, E)

Uinion

Union: Combine two disjoint sets. Example: Union(D, E)

Union

Union: Combine two disjoint sets. Example: Union(D, E)

Union

Union: Combine two disjoint sets. Example: Union(D, E)

Union

Union: Combine two disjoint sets. Example: Union(D, E)

Representation

Observe: This is a forest. How can we represent these trees?

Disjoint Set Trees (aka Union-Find Trees)

Observe: Each element has at most 1 parent (the links point up towards the root).

Only 1 piece of data is needed for each element, so we can use an array.

Disjoint Set Trees (aka Union-Find Trees)

Observe: Each element has at most 1 parent (the links point up towards the root).

Only 1 piece of data is needed for each element, so we can use an array.

5	2	6	2	7	6	-1	-1

-1 is used as a sentinel value representing a root.

Disjoint Set (Simple Version)

constructor:

$$
s=[-1,-1,-1, \ldots,-1]
$$

find(a):
if ($s[a]<0$): return a
return find(s[a])
union(rootA, rootB): \leftarrow assumes you already ran "find", so these are representative elements $s[\operatorname{root} A]=\operatorname{root} B$

Is it fast?

Run union(0,1), union(0,2), ... union $(0, n)$:

Remember balanced trees?
Can we try and make this more balanced?

Union by Size

Strategy: Point the smaller tree at the larger to avoid deep chains.

```
union(rootA, rootB):
    if size(rootB) > size(rootA):
        s[rootA] = rootB
        updateSize(rootB)
    else:
        s[rootB] = rootA
        updateSize(rootA)
```

Problem: How to keep track of size?
Solution: Use the sentinel values! Instead of -1 , store the negative of the size. -1 will still initializes!

Union by Size (in one array)

Strategy: Point the smaller tree at the larger to avoid deep chains.
union(rootA, rootB):
if s[rootB] < s[rootA]: // Note the flipped sign, since we are using the negative of the size!!! $s[$ root $B]=s[$ root $B]+s[$ root $A]$ $s[$ root $A]=\operatorname{root} B$
else:

$$
\begin{aligned}
& s[\operatorname{root} A]=s[\text { root } A]+s[\operatorname{root} B] \\
& s[\operatorname{root} B]=\operatorname{root} A
\end{aligned}
$$

Problem: How to keep track of size?
Solution: Use the sentinel values! Instead of -1 , store the negative of the size. -1 will still initializes!

Analysis of Union by Size

How deep can the trees get?

If the depth of a node increases after a union, it must have been in a smaller subtree.
Therefore, the size of its subtree has at least doubled.
We can double the size of a subtree at most $\log n$ times before everything is in one set.
Therefore the depth of any node can only increase at most $\log n$ times.

This means that the maximum depth of a union-by-size tree is $\mathrm{O}(\log \mathrm{n})$!
Corollary: A sequence of M operations on a disjoint sets collection with N elements takes at most $\mathrm{O}(\mathrm{M} \log \mathrm{N})$ time.

Union by Height (in one array)

Strategy: Point the shallower tree at the larger to avoid deep chains.
union(rootA, rootB):
if $s[\operatorname{rootB}]<s[r o o t A]: / /$ Note the flipped sign, since we are using the negative of the height!!!

$$
s[\operatorname{root} A]=\operatorname{rootB}
$$

else:
if $(s[\operatorname{root} A]==s[\operatorname{root} B])$: // Total height only increases when both trees are equally deep!
$s[r o o t A]--/ /$ Subtracting increases the height
$s[\operatorname{root} B]=\operatorname{root} A$

Note that we are actually storing -(height +1) so that height 0 trees are still negative (still start at -1)

More Optimization!

It's not hard to hit the worst case, but there's not much more left to do!

We haven't changed find yet - what could we do here?

Idea: Whenever we run find, "flatten" the tree for the path we explore (i.e. set the parent of all intermediate nodes to the root:

Find with Path Compression

find(a):

```
if s[a]<0:
    return a
else
        return s[a] = find(s[a] )
```

Runtime for M operations on a size N data structure: $\Theta(M \alpha(M, N))$

The $\alpha(M, N)$ function is very very slow growing (effectively <=5), but this is not quite linear. See chapter 8.6 in the book. It is an instance of an iterated logarithm (log*).

Bringing it back to MSTs: Kruskal's Alg.

```
Kruskal(G = (V, E)) :
queue = priorityQueue(E)
ds = new DisjointSets( |V| )
mst = empty list
while (size(mst) < |V| - 1):
    e=(u,v)=queue.deleteMin()
    repU = ds.find(u)
    repV = ds.find(v)
    if repU != repV:
        mst.add(e)
        ds.union(repU, repV)
return mst
At most 3|E| union-find operations, so these lines contribute at most \(\theta(|E| \alpha(|E|,|V|)) \leq \theta(|E| \log (|E|))\) to the running time.
Therefore the \(\mathrm{O}(|\mathrm{E}| \log (|\mathrm{E}|))\) time of the heap operations dominates!
Since \(|E|=|V|^{2}\), and \(\log \left(|V|^{2}\right)=2 \log (|V|)\), we can write it as \(O(|E| \log (|V|))\).
In practice we don't usually need to iterate over all of the edges, so it's even faster.
```


Another Approach to MSTs: Prim's Alg.

Strategy - Grow an MST from a starting node, just like Dijkstra's algorithm.

```
Dijkstra(Graph G, Vertex source)
    initialize distances to }\infty\mathrm{ , source.dist to 0
    mark all vertices unprocessed
    initialize MPQ as a Min Priority Queue
    add source at priority 0
    while(MPQ is not empty){
        u = MPQ.getMin()
    foreach(edge (u,v) leaving u){
        if(u.dist+w(u,v) < v.dist){
            if(v.dist == \infty)
                MPQ.insert(v, u.dist+w(u,v))
                else
                    MPQ.decreasePriority(v, u.dist+w(u,v))
                v.dist = u.dist+w(u,v)
                v.predecessor = u
            }
}
mark u as processed
    }
```

```
Prim(Graph G, Vertex source)
    initialize distances to }\infty\mathrm{ , source.dist to 0
    mark all vertices unprocessed
    initialize MPQ as a Min Priority Queue
    add source at priority 0
    while(MPQ is not empty){
        u = MPQ.getMin()
        foreach(edge (u,v) leaving u){
        if(w(u,v) < v.dist){
            if(v.dist == \infty)
                MPQ.insert(v, w(u,v))
            else
                MPQ.decreasePriority(v, w(u,v))
            v.dist = w(u,v)
            mst.add(u,v)
        }
        }
        mark u as processed
    }
```

