iy g T—
Al Fe g W TSy

Minimum Spanning
Trees Algorithms

Data Structures and

CSE 373 SU 18 — BEN JONES

Announcements

- Project 3 Due Tonight
- Project 4 Assigned Today

Same partners as project 3
We will re-run project 3 grading on project 4, just like the checkpoint from project 1 (this is why you are

keeping your partners)
If you are curious about the missing part2 of this project, look at last quarter’s website (change 18su to 18sp in

the web address)

Goal for today: Learn the algorithm you will be implementing in project 4.

CSE 373 SU 18 — BEN JONES 2

Review: Minimum Spanning Trees

Spanning Tree — A subtree of a graph that spans (includes) all of the vertices
- connected

- acyclic

JORROSRON
oV B
OSROSR 04

CSE 373 SU 18 — BEN JONES 3

Review: Minimum Spanning Trees

Spanning Tree — A subtree of a graph that spans (includes) all of the vertices
- connected

- acyclic

CSE 373 SU 18 — BEN JONES 4

Review: Minimum Spanning Trees

Spanning Tree — A subtree of a graph that spans (includes) all of the vertices
- connected

- acyclic

CSE 373 SU 18 — BEN JONES 5

Review: Minimum Spanning Trees

Spanning Tree — A subtree of a graph that spans (includes) all of the vertices
- connected

- acyclic

CSE 373 SU 18 — BEN JONES 6

Review: Minimum Spanning Trees

Minimum Spanning Tree — The lowest weight subtree of a graph that spans (includes) all of
the vertices.

CSE 373 SU 18 — BEN JONES 7

Review: Minimum Spanning Trees

Minimum Spanning Tree — The lowest weight subtree of a graph that spans (includes) all of
the vertices.

- A graph can have more than one

CSE 373 SU 18 — BEN JONES 8

How Do We Find One?

Discuss with your neighbors — how could we try to find the minimum spanning tree?
_ N\C,QT % DU"SJN« 'S /A([% - 614,8 —GW\ ﬁ’*Fcc

B T"fa éor”?

CSE 373 SU 18 — BEN JONES 9

Greedy Algorithms

Strategy: Take the best we can get right now, ignoring long-term optimality.
Usually fast to implement

Does not always get the "best” result
But often is “good enough”

Does a greedy approach work for MST?

CSE 373 SU 18 — BEN JONES 10

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

Q @
@ ()

@ Q o8

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

Q @
0 ()

0 Q o8

CSE 373 SU 18 — BEN JONES 12

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

foumOSON
“ NP
DO

CSE 373 SU 18 — BEN JONES 13

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

CSE 373 SU 18 — BEN JONES 14

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

CSE 373 SU 18 — BEN JONES 15

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

CSE 373 SU 18 — BEN JONES 16

A Greedy Approach to MST

Strategy: Pick the smallest edge until we're done.

CSE 373 SU 18 — BEN JONES 17

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 18

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 19

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 20

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 21

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 22

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 23

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 24

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 25

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we're done.

CSE 373 SU 18 — BEN JONES 26

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn't create a cycle until we have n —T edges.

CSE 373 SU 18 — BEN JONES 27

Does this always work?

Proof Sketch: (you don't need to remember this — just remember greedy algorithms don't always find
the optimum solution, but this one does).

At every step we have a forest (never add edges that make a cycle).

At the end, we have a spanning tree (an acyclic graph with n-1 edges can only be a tree with |V| = n).

Suppose we found T, and T* is a minimum spanning tree. If we repeatedly swap in the smallest edge
we didn't pick from T*, we will eventually transform our tree into T*. No swap will ever increase the
weight of our tree, since we picked edges in order from smallest to largest.

So T is at least as small as T*.

To really prove this, use induction! (See CSE 417/421)

CSE 373 SU 18 — BEN JONES 28

Kruskal's Algorithm

Kruskal (G = (V, E)):
queue = priorityQueue (E) O(|E|) — Floyd's Build-Heap
mst = empty list O
while (size(mst) < |V| = 1): Atmost|E|iterations
e = queue.deleteMin () O(log |E|)
if adding e would not create a cycle: 2?72 O(V|+|E[) - DFS from section
mst.add (e) O®)

return mst

O(|E|*) Canwe do better?

CSE 373 SU 18 — BEN JONES 29

A Criteria for Cycle Checking

Observation: An edge will create a cycle if and only if both endpoints are in the same
connected component.

2 1
B C D
/ 6
> 3
A : i 3
1 >
F G
> 4

Strategy: Build a data structure that can quickly answer sameCC(A, B).

CSE 373 SU 18 — BEN JONES 30

Properties of sameCC(A, B)

Recall: A is in the same connected component as B if and only if there is a path from A to B

- sameCC(A, A) = True REFLEXIVITY
There is always a (trivial) path from a vertex to itself

- sameCC(A, B) = sameCC(B, A) >YMMETRY
Reversing a path from A to B makes a path from B to A

- If sameCC(A,B) and sameCC(B, C), then sameCC(A, O) TRANSITIVITY

Can join a path from A to B to a path from B to C, yielding a path from A to C

In mathematics, we call anything with these properties and equivalence relation.

CSE 373 SU 18 — BEN JONES

31

Equivalence Relations

Equivalence Relation: A binary relation (boolean valued function with two arguments of the
same type) that is reflexive, symmetric, and transitive.

Namesake: Equals (==)

-A == (reflexive)
-A==B & B== (symmetric)
-A==BandB==C=> A ==C (transitive)

The collection of all objects that are equivalent under an equivalence relation is called an
equivalence class.

Connected components are equivalence classes under “sameCC” (i.e. pathExists(A,B))

CSE 373 SU 18 — BEN JONES 32

A Datastructure for Equivalence Classes

Main Idea: Link together elements in an equivalence class, pointing towards a representative
element.

CSE 373 SU 18 — BEN JONES 33

A Datastructure for Equivalence Classes

Notice: Equivalence classes are disjoint — they don't share elements. They also cover the
entire set of objects — each object is contained in an equivalence class.

This makes them an
B C D example of disjoint sets.

CSE 373 SU 18 — BEN JONES

34

ADT: Disjoint Sets

Requirements:
- Keeps track of which set each element is in
- Dynamic: can combine sets (union)

- Online: can find the set an element is in on-the-fly (and then continue modifying)

ADT: Disjoint Sets
- union(A, B) —Joins together the sets which A and B belong to

- find(A) - finds a representative element for the set that A is in

- [constructor — all elements start in their own separate disjoint set]

CSE 373 SU 18 — BEN JONES 35

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 — BEN JONES 36

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 — BEN JONES 37

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 — BEN JONES 38

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 — BEN JONES 39

A Datastructure for Equivalence Classes

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 — BEN JONES 40

Find

Find: Return the representative element of an element’s set. Example: find(D) = G

CSE 373 SU 18 — BEN JONES 41

Union

Union: Combine two disjoint sets. Example: Union(D, E)

CSE 373 SU 18 — BEN JONES 42

Uinion

Union: Combine two disjoint sets. Example: Union(D, E)

find(D) = G

CSE 373 SU 18 — BEN JONES 43

Union

Union: Combine two disjoint sets. Example: Union(D, E)

find(E) = H

CSE 373 SU 18 — BEN JONES 44

Union

Union: Combine two disjoint sets. Example: Union(D, E)

Make one of the
representative
elements the
parent of the other

CSE 373 SU 18 — BEN JONES

45

Union

Union: Combine two disjoint sets. Example: Union(D, E)

CSE 373 SU 18 — BEN JONES 46

Representation

Observe: This is a forest. How can we represent these trees?

CSE 373 SU 18 — BEN JONES 47

Disjoint Set Trees (aka Union-Find Trees)

Observe: Each element has at most 1 parent (the links point up towards the root).

Only 1 piece of data is needed for each element, so
we can use an array.

F C G C H ‘ G G ‘ H ‘
CSE373SU18-BEN JONES 48

Disjoint Set Trees (aka Union-Find Trees)

Observe: Each element has at most 1 parent (the links point up towards the root).

6
5 2
0 1 Only 1 piece of data is needed for each element, so
3 we can use an array.

-1is used as a sentinel value
representing a root.

CSE 373 SU 18 — BEN JONES 49

Disjoint Set (Simple Version)

constructor:
s=1[-1-1-1, .. -1]

find(a):
if (s[a] < 0): return a

return find(s[a])

union(rootA, rootB): € assumes you already ran “find”, so these are representative elements

s[rootA] = rootB

CSE 373 SU 18 — BEN JONES 50

|s It fast?

Run union(0,1), union(0,2), ... union(0, n):

()

We might form

@ degenerate trees.

Remember balanced trees?
Can we try and make this
more balanced?

CSE 373 SU 18 — BEN JONES 51

Union by Size
Strategy: Point the smaller tree at the larger to avoid deep chains.

union(rootA, rootB):
if size(rootB) > size(rootA):
s[rootA] = rootB
updateSize(rootB)
else:
s[rootB] = rootA
updateSize(rootA)

Problem: How to keep track of size?
Solution: Use the sentinel values! Instead of -1, store the negative of the size. -1 will still initializes!

CSE 373 SU 18 — BEN JONES 52

Union by Size (in one array)

Strategy: Point the smaller tree at the larger to avoid deep chains.

union(rootA, rootB):
if s[rootB] < s[rootA]: // Note the flipped sign, since we are using the negative of the size!!!
s[rootB] = s[rootB] + s[rootA]
s[rootA] = rootB
else:
s[rootA] = s[rootA] + s[rootB]
s[rootB] = rootA

Problem: How to keep track of size?
Solution: Use the sentinel values! Instead of -1, store the negative of the size. -1 will still initializes!

CSE 373 SU 18 — BEN JONES 53

Analysis of Union by Size

How deep can the trees get?

If the depth of a node increases after a union, it must have been in a smaller subtree.
Therefore, the size of its subtree has at least doubled.
We can double the size of a subtree at most log n times before everything is in one set.

Therefore the depth of any node can only increase at most log n times.

This means that the maximum depth of a union-by-size tree is O(log n)!

Corollary: A sequence of M operations on a disjoint sets collection with N elements takes at
most O(M log N) time.

CSE 373 SU 18 — BEN JONES 54

Union by Height (in one array)

Strategy: Point the shallower tree at the larger to avoid deep chains.

union(rootA, rootB):

if s[rootB] < s[rootA]: // Note the flipped sign, since we are using the negative of the height!!!
s[rootA] = rootB

else:

if (s[rootA] == s[rootB]): // Total height only increases when both trees are equally deep!
s[rootA]-- // Subtracting increases the height
s[rootB] = rootA

Note that we are actually storing -(height + 1) so that height O trees are still negative (still start at -1)

CSE 373 SU 18 — BEN JONES 55

More Optimization!

It's not hard to hit the worst case, but there’s not much more left to do!
We haven't changed find yet — what could we do here?

Idea: Whenever we run find, “flatten” the tree for the path we explore (i.e. set the parent of
all intermediate nodes to the root:

O)

@ J 00
& @06 OMNONO

CSE 373 SU 18 — BEN JONES 56

Find with Path Compression

find(a):
if s[a] < O:
return a
else

return s[a] = find(s[a])

Runtime for M operations on a size N data structure: @(M OK(M, N))

The a(M, N) function is very ver{ slow growing (effectively <= 5), but this is not quite
linear. See chapter 8.6 in the book. It is an instance of an iterated logarithm (log*).

CSE 373 SU 18 — BEN JONES 57

Bringing 1t back to MSTs: Kruskal’s Alg.

Kruskal (G = (V, E)):

queue = priorityQueue (E)
ds = new DisjointSets(|V|) At most 3‘|E| umon—fmd operations,
so these lines contribute at most
mst = empty list O(IEla(|E],IV])) < 6(IE|log(IE))
while (size (mst) < |V| - 1): to the running time.
e = (u,v) = queue.deleteMin () Therefore the O(|E| log(|E)) time of

repU = ds.find (u) the heap operations dominates!

repV = ds.find (v) Since |E| = |V|?, and

. log(|V]%) = 2log(|V]), we can
| — .

1t repU = repV: write it as O(|E| log([V])).

mst.add (e)

In practice we don't usually need to

iterate over all of the edges, so it's
return mst even faster.

ds.union (repU, repV)

CSE 373 SU 18 — BEN JONES

58

Another Approach to MSTs: Prim’s Alg.

Strategy — Grow an MST from a starting node, just like Dijkstra’s algorithm.

Dijkstra(Graph G, Vertex source)
initialize distances to oo, source.dist to 0
mark all vertices unprocessed
initialize MPQ as a Min Priority Queue
add source at priority 0
while(MPQ is not empty){
u = MPQ.getMin()
foreach(edge (u,v) leaving u){
if(u.dist+w(u,v) < v.dist){
if(v.dist == o0)
MPQ.insert(v, u.dist+w(u,v))
else
MPQ.decreasePriority(v, u.dist+w(u,v))
v.dist = u.dist+w(u,v)
v.predecessor = u

}
}

mark u as processed

Prim(Graph G, Vertex source)
initialize distances to o, source.distto 0

mark all vertices unprocessed
initialize MPQ as a Min Priority Queue
add source at priority 0
while(MPQ is not empty){
u = MPQ.getMin()
foreach(edge (u,v) leaving u){
if(w(u,v) < v.dist){
if(v.dist == o0)
MPQ.insert(v, w(u,v))
else
MPQ.decreasePriority(v, w(u,v))
v.dist = w(u,v)
mst.add(u,v)
}
}

mark u as processed

CSE 373 SU 18 — BEN JONES

59

