
Minimum Spanning
Trees

Data Structures and

Algorithms

CSE 373 SU 18 – BEN JONES 1

Announcements

- Project 3 Due Tonight

- Project 4 Assigned Today
- Same partners as project 3

- We will re-run project 3 grading on project 4, just like the checkpoint from project 1 (this is why you are
keeping your partners)

- If you are curious about the missing part2 of this project, look at last quarter’s website (change 18su to 18sp in
the web address)

Goal for today: Learn the algorithm you will be implementing in project 4.

CSE 373 SU 18 – BEN JONES 2

Review: Minimum Spanning Trees

Spanning Tree – A subtree of a graph that spans (includes) all of the vertices

- connected

- acyclic

CSE 373 SU 18 – BEN JONES 3

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

36

Review: Minimum Spanning Trees

Spanning Tree – A subtree of a graph that spans (includes) all of the vertices

- connected

- acyclic

CSE 373 SU 18 – BEN JONES 4

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

36

Review: Minimum Spanning Trees

Spanning Tree – A subtree of a graph that spans (includes) all of the vertices

- connected

- acyclic

CSE 373 SU 18 – BEN JONES 5

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

36

Review: Minimum Spanning Trees

Spanning Tree – A subtree of a graph that spans (includes) all of the vertices

- connected

- acyclic

CSE 373 SU 18 – BEN JONES 6

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

36

Review: Minimum Spanning Trees

Minimum Spanning Tree – The lowest weight subtree of a graph that spans (includes) all of
the vertices.

CSE 373 SU 18 – BEN JONES 7

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

36

Review: Minimum Spanning Trees

Minimum Spanning Tree – The lowest weight subtree of a graph that spans (includes) all of
the vertices.

- A graph can have more than one

CSE 373 SU 18 – BEN JONES 8

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

36

How Do We Find One?

Discuss with your neighbors – how could we try to find the minimum spanning tree?

CSE 373 SU 18 – BEN JONES 9

Greedy Algorithms

Strategy: Take the best we can get right now, ignoring long-term optimality.
- Usually fast to implement

- Does not always get the “best” result

- But often is “good enough”

Does a greedy approach work for MST?

CSE 373 SU 18 – BEN JONES 10

A Greedy Approach to MST

Strategy: Pick the smallest edge until we’re done.

CSE 373 SU 18 – BEN JONES 11

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge until we’re done.

CSE 373 SU 18 – BEN JONES 12

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge until we’re done.

CSE 373 SU 18 – BEN JONES 13

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge until we’re done.

CSE 373 SU 18 – BEN JONES 14

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge until we’re done.

CSE 373 SU 18 – BEN JONES 15

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge until we’re done.

CSE 373 SU 18 – BEN JONES 16

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge until we’re done.

CSE 373 SU 18 – BEN JONES 17

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 18

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 19

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 20

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 21

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 22

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 23

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 24

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 25

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we’re done.

CSE 373 SU 18 – BEN JONES 26

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

A Greedy Approach to MST

Strategy: Pick the smallest edge that doesn’t create a cycle until we have n – 1 edges.

CSE 373 SU 18 – BEN JONES 27

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

Does this always work?

Proof Sketch: (you don’t need to remember this – just remember greedy algorithms don’t always find
the optimum solution, but this one does).

At every step we have a forest (never add edges that make a cycle).

At the end, we have a spanning tree (an acyclic graph with n-1 edges can only be a tree with |V| = n).

Suppose we found T, and T* is a minimum spanning tree. If we repeatedly swap in the smallest edge
we didn’t pick from T*, we will eventually transform our tree into T*. No swap will ever increase the
weight of our tree, since we picked edges in order from smallest to largest.

So T is at least as small as T*.

To really prove this, use induction! (See CSE 417/421)

CSE 373 SU 18 – BEN JONES 28

Kruskal’s Algorithm

Kruskal(G = (V, E)):

queue = priorityQueue(E)

mst = empty list

while (size(mst) < |V| - 1):

e = queue.deleteMin()

if adding e would not create a cycle:

mst.add(e)

return mst

CSE 373 SU 18 – BEN JONES 29

O(|E|) – Floyd’s Build-Heap

At most |E| iterations

O(log |E|)

O(1)

O(1)

??? O(|V|+|E|) – DFS from section

𝑶(𝑬 𝟐) Can we do better?

A Criteria for Cycle Checking

Observation: An edge will create a cycle if and only if both endpoints are in the same
connected component.

CSE 373 SU 18 – BEN JONES 30

B C D

E

H

A

GF

1

2

1

1

3

2

2

3

5

4

6

32

Strategy: Build a data structure that can quickly answer sameCC(A, B).

Properties of sameCC(A, B)

Recall: A is in the same connected component as B if and only if there is a path from A to B

- sameCC(A, A) = True
- There is always a (trivial) path from a vertex to itself

- sameCC(A, B) = sameCC(B, A)
- Reversing a path from A to B makes a path from B to A

- If sameCC(A,B) and sameCC(B, C), then sameCC(A, C)
- Can join a path from A to B to a path from B to C, yielding a path from A to C

In mathematics, we call anything with these properties and equivalence relation.

CSE 373 SU 18 – BEN JONES 31

REFLEXIVITY

SYMMETRY

TRANSITIVITY

Equivalence Relations

Equivalence Relation: A binary relation (boolean valued function with two arguments of the
same type) that is reflexive, symmetric, and transitive.

Namesake: Equals (==)

- A == A (reflexive)

- A == B  B == A (symmetric)

- A == B and B == C  A == C (transitive)

The collection of all objects that are equivalent under an equivalence relation is called an
equivalence class.

Connected components are equivalence classes under “sameCC” (i.e. pathExists(A,B))

CSE 373 SU 18 – BEN JONES 32

A Datastructure for Equivalence Classes

Main Idea: Link together elements in an equivalence class, pointing towards a representative
element.

CSE 373 SU 18 – BEN JONES 33

B C D

E

H

A

GF

H

G

A Datastructure for Equivalence Classes

Notice: Equivalence classes are disjoint – they don’t share elements. They also cover the
entire set of objects – each object is contained in an equivalence class.

CSE 373 SU 18 – BEN JONES 34

B C D

E

H

A

GF

H

G This makes them an

example of disjoint sets.

ADT: Disjoint Sets

Requirements:

- Keeps track of which set each element is in

- Dynamic: can combine sets (union)

- Online: can find the set an element is in on-the-fly (and then continue modifying)

ADT: Disjoint Sets

- union(A, B) – Joins together the sets which A and B belong to

- find(A) - finds a representative element for the set that A is in

- [constructor – all elements start in their own separate disjoint set]

CSE 373 SU 18 – BEN JONES 35

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 – BEN JONES 36

B C D

E

H

A

GF

H

G

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 – BEN JONES 37

B C D

E

H

A

GF

H

G

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 – BEN JONES 38

B C D

E

H

A

GF

H

G

Find

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 – BEN JONES 39

B C D

E

H

A

GF

H

G

A Datastructure for Equivalence Classes

Find: Return the representative element of an element’s set. Example: find(D)

CSE 373 SU 18 – BEN JONES 40

B C D

E

H

A

GF

H

G

Find

Find: Return the representative element of an element’s set. Example: find(D) = G

CSE 373 SU 18 – BEN JONES 41

B C D

E

H

A

GF

H

G

Union

Union: Combine two disjoint sets. Example: Union(D, E)

CSE 373 SU 18 – BEN JONES 42

B C D

E

H

A

GF

H

G

Uinion

Union: Combine two disjoint sets. Example: Union(D, E)

CSE 373 SU 18 – BEN JONES 43

B C D

E

H

A

GF

H

G
find(D) = G

Union

Union: Combine two disjoint sets. Example: Union(D, E)

CSE 373 SU 18 – BEN JONES 44

B C D

E

H

A

GF

H

G
find(E) = H

Union

Union: Combine two disjoint sets. Example: Union(D, E)

CSE 373 SU 18 – BEN JONES 45

B C D

E

H

A

GF

H

G
Make one of the

representative

elements the

parent of the other

Union

Union: Combine two disjoint sets. Example: Union(D, E)

CSE 373 SU 18 – BEN JONES 46

B C D

E

H

A

GF

G

Representation

Observe: This is a forest. How can we represent these trees?

CSE 373 SU 18 – BEN JONES 47

B C D

E

H

A

GF

H

G

Disjoint Set Trees (aka Union-Find Trees)

Observe: Each element has at most 1 parent (the links point up towards the root).

CSE 373 SU 18 – BEN JONES 48

B

C

D

E

H

A

G

F

Only 1 piece of data is needed for each element, so

we can use an array.

BA C D E F G H

F C G C H G G H

Disjoint Set Trees (aka Union-Find Trees)

Observe: Each element has at most 1 parent (the links point up towards the root).

CSE 373 SU 18 – BEN JONES 49

1

2

3

4

7

0

6

5

Only 1 piece of data is needed for each element, so

we can use an array.

10 2 3 4 5 6 7

5 2 6 2 7 6 -1 -1

-1 is used as a sentinel value

representing a root.

Disjoint Set (Simple Version)

constructor:

s = [-1, -1, -1, …, -1]

find(a):

if (s[a] < 0): return a

return find(s[a])

union(rootA, rootB):  assumes you already ran “find”, so these are representative elements

s[rootA] = rootB

CSE 373 SU 18 – BEN JONES 50

Is it fast?

Run union(0,1), union(0,2), … union(0, n):

CSE 373 SU 18 – BEN JONES 51

n

2

1

0

We might form

degenerate trees.

Remember balanced trees?

Can we try and make this

more balanced?

Union by Size

Strategy: Point the smaller tree at the larger to avoid deep chains.

union(rootA, rootB):

if size(rootB) > size(rootA):

s[rootA] = rootB

updateSize(rootB)

else:

s[rootB] = rootA

updateSize(rootA)

Problem: How to keep track of size?

Solution: Use the sentinel values! Instead of -1, store the negative of the size. -1 will still initializes!

CSE 373 SU 18 – BEN JONES 52

Union by Size (in one array)

Strategy: Point the smaller tree at the larger to avoid deep chains.

union(rootA, rootB):

if s[rootB] < s[rootA]: // Note the flipped sign, since we are using the negative of the size!!!

s[rootB] = s[rootB] + s[rootA]

s[rootA] = rootB

else:

s[rootA] = s[rootA] + s[rootB]

s[rootB] = rootA

Problem: How to keep track of size?

Solution: Use the sentinel values! Instead of -1, store the negative of the size. -1 will still initializes!

CSE 373 SU 18 – BEN JONES 53

Analysis of Union by Size

How deep can the trees get?

If the depth of a node increases after a union, it must have been in a smaller subtree.

Therefore, the size of its subtree has at least doubled.

We can double the size of a subtree at most log n times before everything is in one set.

Therefore the depth of any node can only increase at most log n times.

This means that the maximum depth of a union-by-size tree is O(log n)!

Corollary: A sequence of M operations on a disjoint sets collection with N elements takes at
most O(M log N) time.

CSE 373 SU 18 – BEN JONES 54

Union by Height (in one array)

Strategy: Point the shallower tree at the larger to avoid deep chains.

union(rootA, rootB):

if s[rootB] < s[rootA]: // Note the flipped sign, since we are using the negative of the height!!!

s[rootA] = rootB

else:

if (s[rootA] == s[rootB]): // Total height only increases when both trees are equally deep!

s[rootA]-- // Subtracting increases the height

s[rootB] = rootA

Note that we are actually storing -(height + 1) so that height 0 trees are still negative (still start at -1)

CSE 373 SU 18 – BEN JONES 55

More Optimization!

It’s not hard to hit the worst case, but there’s not much more left to do!

We haven’t changed find yet – what could we do here?

Idea: Whenever we run find, “flatten” the tree for the path we explore (i.e. set the parent of
all intermediate nodes to the root:

CSE 373 SU 18 – BEN JONES 56

1

0

2

4 5 6

8

3

7

1

0

2

4 5

6

8
3

7

Find with Path Compression

find(a):

if s[a] < 0:

return a

else

return s[a] = find(s[a])

Runtime for M operations on a size N data structure:

The 𝛼 𝑀,𝑁 function is very very slow growing (effectively <= 5), but this is not quite
linear. See chapter 8.6 in the book. It is an instance of an iterated logarithm (log*).

CSE 373 SU 18 – BEN JONES 57

Θ(𝑀 𝛼 𝑀,𝑁)

Bringing it back to MSTs: Kruskal’s Alg.

Kruskal(G = (V, E)):

queue = priorityQueue(E)

ds = new DisjointSets(|V|)

mst = empty list

while (size(mst) < |V| - 1):

e = (u,v) = queue.deleteMin()

repU = ds.find(u)

repV = ds.find(v)

if repU != repV:

mst.add(e)

ds.union(repU, repV)

return mst

CSE 373 SU 18 – BEN JONES 58

At most 3|E| union-find operations,

so these lines contribute at most

𝜃 𝐸 𝛼 𝐸 , 𝑉 ≤ 𝜃 𝐸 log 𝐸

to the running time.

Therefore the O(|E| log(|E|)) time of

the heap operations dominates!

Since 𝐸 = 𝑉 2, and

log 𝑉 2 = 2 log 𝑉 , we can

write it as 𝑂(𝐸 log 𝑉).

In practice we don’t usually need to

iterate over all of the edges, so it’s

even faster.

Another Approach to MSTs: Prim’s Alg.

Strategy – Grow an MST from a starting node, just like Dijkstra’s algorithm.

CSE 373 SU 18 – BEN JONES 59

Dijkstra(Graph G, Vertex source)

initialize distances to ∞, source.dist to 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue

add source at priority 0

while(MPQ is not empty){

u = MPQ.getMin()

foreach(edge (u,v) leaving u){

if(u.dist+w(u,v) < v.dist){

if(v.dist == ∞)

MPQ.insert(v, u.dist+w(u,v))

else

MPQ.decreasePriority(v, u.dist+w(u,v))

v.dist = u.dist+w(u,v)

v.predecessor = u

}

}

mark u as processed

}

Prim(Graph G, Vertex source)

initialize distances to ∞, source.dist to 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue

add source at priority 0

while(MPQ is not empty){

u = MPQ.getMin()

foreach(edge (u,v) leaving u){

if(w(u,v) < v.dist){

if(v.dist == ∞)

MPQ.insert(v, w(u,v))

else

MPQ.decreasePriority(v, w(u,v))

v.dist = w(u,v)

mst.add(u,v)

}

}

mark u as processed

}

