
Dijkstra’s Algorithm

CSE 373 SP 18 - KASEY CHAMPION 1

Dijkstra(Graph G, Vertex source) 

initialize distances to ∞

mark all vertices unprocesed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+w(u,v) < v.dist){

v.dist = u.dist+w(u,v)

v.predecessor = u

}

}

mark u as processed

} s
tv

w

u

1

20

1

1 1

x

1

Vertex Distance Predecessor Processed

s

w

x

u

v

t



Dijkstra’s Algorithm

CSE 373 SP 18 - KASEY CHAMPION 2

Dijkstra(Graph G, Vertex source) 

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+w(u,v) < v.dist){

v.dist = u.dist+w(u,v)

v.predecessor = u

}

}

mark u as processed

}
s

tv

w

u

1

20

1

1 1

x

1

Vertex Distance Predecessor Processed

s 0 -- Yes

w 1 s Yes

x 2 w Yes

u 3 x Yes

v 4 u Yes

t 5 v Yes



Implementation Details

One of those lines of pseudocode was a little sketchy

> let u be the closest unprocessed vertex

What ADT have we talked about that might work here?

Minimum Priority Queues!

CSE 373 SP 18 - KASEY CHAMPION 3

Min Priority Queue ADT

removeMin() – returns the element 

with the smallest priority, removes it 

from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not remove 

the element with the smallest priority

insert(value) – add a new element to 

the collection



Making Minimum Priority Queues Work

They won’t quite work “out of the box”. 

We don’t have an update priority method. Can we add one?
- Percolate up!

To percolate u’s entry in the heap up we’ll have to get to it.
- Each vertex need pointer to where it appears in the priority queue

- I’m going to ignore this point for the rest of the lecture. 

CSE 373 SP 18 - KASEY CHAMPION 4

Min Priority Queue ADT

removeMin() – returns the element 

with the smallest priority, removes it 

from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not remove 

the element with the smallest priority

insert(value) – add a new element to 

the collection

DecreasePriority(e, p) – decreases the 

priority of element e down to p.



Running Time Analysis

CSE 373 SP 18 - KASEY CHAMPION 5

Dijkstra(Graph G, Vertex source) 

initialize distances to ∞, source.dist to 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue

add source at priority 0

while(MPQ is not empty){

u = MPQ.getMin()

foreach(edge (u,v) leaving u){

if(u.dist+w(u,v) < v.dist){

if(v.dist == ∞ )

MPQ.insert(v, u.dist+w(u,v))

else

MPQ.decreasePriority(v, u.dist+w(u,v)) 

v.dist = u.dist+w(u,v)

v.predecessor = u

}

}

mark u as processed

}



Another Application of Shortest Paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary relationships among 
objects.

I don’t care if you remember this problem 

I don’t care if you remember how we apply shortest paths. 

I just want you to see that these algorithms have non-obvious applications.

CSE 373 SP 18 - KASEY CHAMPION 6



Another Application of Shortest Paths

CSE 373 SP 18 - KASEY CHAMPION 7

Given: a directed graph G, where each edge weight is the probability 

of successfully transmitting a message across that edge

Find: the path from s to t with maximum probability of message 

transmission

Maximum Probability Path

I have a message I need to get from point s to point t. 

But the connections are unreliable. 

What path should I send the message along so it has the best chance of arriving?

s

u

v

t0.6

0.8

0.97

0.7

0.2



Another Application of Shortest Paths

Let each edge’s weight be the probability a message is sent successfully across the edge.

What’s the probability we get our message all the way across a path? 
- It’s the product of the edge weights.

We only know how to handle sums of edge weights. 

Is there a way to turn products into sums?

log 𝑎𝑏 = log 𝑎 + log 𝑏

CSE 373 SP 18 - KASEY CHAMPION 8

s

u

v

t0.6

0.8

0.97

0.7

0.2



Another Application of Shortest Paths

We’ve still got two problems.

1. When we take logs, our edge weights become negative.

2. We want the maximum probability of success, but that’s the longest path not the shortest 
one.

Multiplying all edge weights by negative one fixes both problems at once!

We reduced the maximum probability path problem to a shortest path problem by taking 
− log() of each edge weight.

CSE 373 SP 18 - KASEY CHAMPION 9

s

u

v

t-0.74

-0.32

-0.04

-0.51

-2.32



Maximum Probability Path Reduction

CSE 373 SP 18 - KASEY CHAMPION 10

s

u

v

t0.74

0.32

0.04

0.51

2.32

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.74

0.32

0.04

0.51

2.32

Weighted Shortest Paths

Transform Input

Transform Output



Problem 1: Ordering Dependencies

Today’s (first) problem: Given a bunch of courses with prerequisites, find an order to take 
the courses in.

CSE 373 SP 18 - KASEY CHAMPION 11

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417



Problem 1: Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must happen before v.

We can only do things one at a time, can we find an order that respects dependencies?

CSE 373 SP 18 - KASEY CHAMPION 12

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right. 

Topological Sort (aka Topological Ordering)

Uses: 

Compiling multiple files

Graduating.



Topological Ordering

A course prerequisite chart and a possible topological ordering.

CSE 373 SP 18 - KASEY CHAMPION 13

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417



Can we always order a graph?

CSE 373 SP 18 - KASEY CHAMPION 14

A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?



Ordering a DAG

Does this graph have a topological ordering? If so find one.

CSE 373 SP 18 - KASEY CHAMPION 15

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the ordering.

More generally, if the only incoming edges are from vertices already in the ordering, it’s safe to 

add. 



How Do We Find a Topological Ordering?

CSE 373 SP 18 - KASEY CHAMPION 16

TopologicalSort(Graph G, Vertex source) 

count how many incoming edges each vertex has

Collection toProcess = new Collection()

foreach(Vertex v in G){

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

topOrder = new List() 

while(toProcess is not empty){

u = toProcess.remove()

topOrder.insert(u)

foreach(edge (u,v) leaving u){

v.edgesRemaining--

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

}



What’s the running time?

CSE 373 SP 18 - KASEY CHAMPION 17

TopologicalSort(Graph G, Vertex source) 

count how many incoming edges each vertex has

Collection toProcess = new Collection()

foreach(Vertex v in G){

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

topOrder = new List() 

while(toProcess is not empty){

u = toProcess.remove()

topOrder.insert(u)

foreach(edge (u,v) leaving u){

v.edgesRemaining--

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

}



Strongly Connected Components

CSE 373 SP 18 - KASEY CHAMPION 18



Review: Connected [Undirected] Graphs

Connected graph – a graph where every vertex 
is connected to every other vertex via some 
path. It is not required for every vertex to have 
an edge to every other vertex

There exists some way to get from each vertex 
to every other vertex

CSE 373 SP 18 - KASEY CHAMPION 19

Sansa

Robb

Bran

Arya

Rickon

Jon

Dany

Connected Component – a subgraph
in which any two vertices are 
connected via some path, but is 
connected to no additional vertices in 
the supergraph
- There exists some way to get from each 

vertex within the connected component to 
every other vertex in the connected 
component

- A vertex with no edges is itself a connected 
component

Viserys



Review Strongly Connected Components

Note: the direction of the edges matters!

CSE 373 SP 18 - KASEY CHAMPION 20

A subgraph C such that every pair of vertices in C is connected 

via some path in both directions, and there is no other vertex 

which is connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E



Strongly Connected Components Problem

CSE 373 SP 18 - KASEY CHAMPION 21

Given: A directed graph G

Find: The strongly connected components of G

Strongly Connected Components Problem

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}



SCC Algorithm

Ok. How do we make a computer do this?

You could: 
- run a [B/D]FS from every vertex, 

- For each vertex record what other vertices it can get to 

- and figure it out from there. 

But you can do better. There’s actually an O(|V|+|E|) algorithm!

I only want you to remember two things about the algorithm: 
- It is an application of depth first search. 

- It runs in linear time

The problem with running a [B/D]FS from every vertex is you recompute a lot of information.

The time you are popped off the stack in DFS contains a “smart” ordering to do a second DFS where 
you don’t need to recompute that information.

CSE 373 SP 18 - KASEY CHAMPION 22



Why Find SCCs?

Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
- Have a vertex for each of the strongly connected components

- Add an edge from component 1 to component 2 if there is an edge from a vertex inside 1 to one inside 2.

CSE 373 SP 18 - KASEY CHAMPION 23

D

C F

B EA K

J

1

3 4

2



Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the original graph. 
- I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get from 1 to 3 in H. 

CSE 373 SP 18 - KASEY CHAMPION 24

D

C F

B EA K

J

1

3 4

2



Why Must H Be a DAG?

H is always a DAG (do you see why?).

CSE 373 SP 18 - KASEY CHAMPION 25



Takeaways

Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at least as long.

You should think of these as “almost free” preprocessing of your graph. 
- Your other graph algorithms only need to work on 

- topologically sorted graphs and 

- strongly connected graphs. 

CSE 373 SP 18 - KASEY CHAMPION 26



A Longer Example

The best way to really see why this is useful is to do a bunch of examples. 

Take CSE 417 for that. The second best way is to see one example right now...

This problem doesn’t look like it has anything to do with graphs 
- no maps

- no roads

- no social media friendships

Nonetheless, a graph representation is the best one.

I don’t expect you to remember this problem.

I just want you to see 
- graphs can show up anywhere.

- SCCs and Topological Sort are useful algorithms.

CSE 373 SP 18 - KASEY CHAMPION 27



Example Problem: Final Creation

We have a long list of types of problems we might want to put on the final. 
- Heap insertion problem, big-O problems, finding closed forms of recurrences, testing…

To try to make you all happy, we might ask for your preferences. Each of you gives us two 
preferences of the form “I [do/don’t] want a [] problem on the final” *

We’ll assume you’ll be happy if you get at least one of your two preferences.

CSE 373 SP 18 - KASEY CHAMPION 28

*This is NOT how Ben is making the final.

Given: A list of 2 preferences per student.

Find: A set of questions so every student gets at least one of their 

preferences (or accurately report no such question set exists).

Final Creation Problem



Final Creation: Take 1

We have Q kinds of questions and S students.

What if we try every possible combination of questions.

How long does this take? O(2𝑄𝑆)

If we have a lot of questions, that’s really slow.

CSE 373 SP 18 - KASEY CHAMPION 29



Final Creation: Take 2
Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:

CSE 373 SP 18 - KASEY CHAMPION 30

If we don’t include a big-O proof, can you still be happy?

If we do include a recurrence can you still be happy?

Yes! 

Big-O

NO 
recurrence

Yes! 
recurrence

NO 

Testing
NO 

Big-O

Yes! 

Testing

NO 

Heaps

Yes! 

Heaps

Problem YES NO

Big-O X

Recurrence X 

Testing

Heaps

Problem YES NO

Big-O

Recurrence X

Testing X

Heaps



Final Creation: Take 2

Hey we made a graph!

What do the edges mean? 
- We need to avoid an edge that goes TRUE THING  FALSE THING

Let’s think about a single SCC of the graph. 

Can we have a true and false statement in the same SCC?

What happens now that Yes B and NO B are in the same SCC?

CSE 373 SP 18 - KASEY CHAMPION 31

NO 

C

Yes

A

NO 

BYes

B

NO 

E



Final Creation: SCCs

The vertices of a SCC must either be all true or all false.

Algorithm Step 1: Run SCC on the graph. Check that each question-type-pair are in different 
SCC.

Now what? Every SCC gets the same value. 
- Treat it as a single object! 

We want to avoid edges from true things to false things. 
- “Trues” seem more useful for us at the end. 

Is there some way to start from the end?

YES! Topological Sort 

CSE 373 SP 18 - KASEY CHAMPION 32



Making the Final

Algorithm:
Make the requirements graph.

Find the SCCs.

If any SCC has including and not including a problem, we can’t make the final.

Run topological sort on the graph of SCC. 

Starting from the end:
- if everything in a component is unassigned, set them to true, and set their opposites to false.

- Else If one thing in a component is assigned, assign the same value to the rest of the nodes in the component 
and the opposite value to their opposites. 

This works!!

How fast is it? 

O(Q + S). That’s a HUGE improvement.

CSE 373 SP 18 - KASEY CHAMPION 33



Some More Context

The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and needed to satisfy 
everything in a list of requirements. 

SAT is a general way to encode lots of hard problems.

Because every requirement was “do at least one of these 2” this was a 2-SAT instance.

If we change the 2 into a 3, no one knows an algorithm that runs efficiently.

And finding one (or proving one doesn’t exist) has a $1,000,000 prize.

If we get to P vs. NP at the end of the quarter Kasey will tell you more.

CSE 373 SP 18 - KASEY CHAMPION 34



Appendix: Strongly Connected 
Components Algorithm

CSE 373 SP 18 - KASEY CHAMPION 35



Efficient SCC

We’d like to find all the vertices in our strongly connected component in time 
corresponding to the size of the component, not for the whole graph.

We can do that with a DFS (or BFS) as long as we don’t leave our connected component.

If we’re a “sink” component, that’s guaranteed. I.e. a component whose vertex in the meta-
graph has no outgoing edges. 

How do we find a sink component? We don’t have a meta-graph yet (we need to find the 
components first)

DFS can find a vertex in a source component, i.e. a component whose vertex in the meta-
graph has no incoming edges. 
- That vertex is the last one to be popped off the stack.

So if we run DFS in the reversed graph (where each edge points the opposite direction) we 
can find a sink component.  

CSE 373 SP 18 - KASEY CHAMPION 36



Efficient SCC

So from a DFS in the reversed graph, we can use the order vertices are popped off the stack 
to find a sink component (in the original graph).

Run a DFS from that vertex to find the vertices in that component in size of that component 
time.

Now we can delete the edges coming into that component.

The last remaining vertex popped off the stack is a sink of the remaining graph, and now a 
DFS from them won’t leave the component. 

Iterate this process (grab a sink, start DFS, delete edges entering the component).

In total we’ve run two DFSs. (since we never leave our component in the second DFS).

More information, and pseudocode:

https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/19-dfs.pdf (mathier)

CSE 373 SP 18 - KASEY CHAMPION 37

https://en.wikipedia.org/wiki/Kosaraju's_algorithm
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/19-dfs.pdf

