
Warm Up

Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

CSE 373 SP 18 - KASEY CHAMPION 1

s t

v

u x

w

y

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.outneighbors())

if (v is not visited)

toVisit.enqueue(v)

mark v as visited

finished.add(current)

Correct order: s,u,v,y,x,w,t

Shortest Paths

How does Google Maps figure out this is the fastest way to get to office hours from Kane?

CSE 373 SP 18 - KASEY CHAMPION 2

Representing Maps as Graphs

How do we represent a map as a graph? What are the vertices and edges?

CSE 373 SP 18 - KASEY CHAMPION 3

Representing Maps as Graphs

CSE 373 SP 18 - KASEY CHAMPION 4

K

R

D

P

H
S

4

1 2

2

4

3

5

Shortest Paths

CSE 373 SP 18 - KASEY CHAMPION 5

The length of a path is the sum of the edge weights on that path.

Shortest Path Problem

Given: a directed graph G and vertices s and t

Find: the shortest path from s to t

s
w

y

u

t

v x

1 4

1

5

4
2 5

6

3

Unweighted graphs

Let’s start with a simpler version: the edges are all the same weight (unweighted)

If the graph is unweighted, how do we find a shortest paths?

CSE 373 SP 18 - KASEY CHAMPION 6

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What’s the shortest path from s to s?
- Well….we’re already there.

What’s the shortest path from s to u or v?
- Just go on the edge from s

From s to w,x, or y?
- Can’t get there directly from s, if we want a length 2 path, have to go through u or v.

CSE 373 SP 18 - KASEY CHAMPION 7

s t

v

u

y

w

x

Unweighted Graphs: Key Idea

To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if
any of them have an outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yes! BFS!

CSE 373 SP 18 - KASEY CHAMPION 8

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

source.dist = 0

mark source as visited

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors()){

if (v is not yet visited){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as visited

}

}

}

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

CSE 373 SP 18 - KASEY CHAMPION 9

s t

v

u

y

w

x

1

1

2

2

2

3

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

source.dist = 0

mark source as visited

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors()){

if (v is not yet visited){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as visited

}

}

}

What about the target vertex?

CSE 373 SP 18 - KASEY CHAMPION 10

Given: a directed graph G and vertices s,t

Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…

It actually finds the shortest path from s to every other vertex.

If you know your target, you can stop the algorithm early, when the target is

removed from the queue.

Weighted Graphs

Each edge should represent the “time” or “distance” from one vertex to another.

Sometimes those aren’t uniform, so we put a weight on each edge to record that number.

The length of a path in a weighted graph is the sum of the weights along that path.

We’ll assume all of the weights are positive
- For GoogleMaps that definitely makes sense.

- Sometimes negative weights make sense. Today’s algorithm doesn’t work for those graphs

- There are other algorithms that do work.

CSE 373 SP 18 - KASEY CHAMPION 11

Weighted Graphs: Take 1

BFS works if the graph is unweighted. Maybe it just works for weighted graphs too?

CSE 373 SP 18 - KASEY CHAMPION 12

s
tv

w

u

What went wrong? When we found a shorter path from s to u, we needed to update the

distance to v (and anything whose shortest path went through u) but BFS doesn’t do that.

1

20

1

1 10

∞

∞ ∞ ∞

x

∞11

20 21

2

223

Weighted Graphs: Take 2

You already do this all the time.

In a previous project, you reduced implementing a hashset to implementing a hashmap.

Any time you use a library, you’re reducing your problem to the one the library solves.

Can we reduce finding shortest paths on weighted graphs to finding them on unweighted
graphs?

CSE 373 SP 18 - KASEY CHAMPION 13

Using an algorithm for Problem B to solve

Problem A.

Reduction (informally)

Weighted Graphs: A Reduction

Given a weighted graph, how do we turn it into an unweighted one without messing up the
edge lengths?

CSE 373 SP 18 - KASEY CHAMPION 14

s

u

v

t
2

2

2

1

1

s

u

v

t

s

u

v

t 2

s

u

v

t
2

2

2

1

1

2

Transform Input

Transform Output

Unweighted

Shortest Paths

Weighted Graphs: A Reduction

What is the running time of our
reduction on this graph?

O(|V|+|E|) of the modified graph,
which is…slow.

CSE 373 SP 18 - KASEY CHAMPION 15

Does our reduction even work on this
graph?

Ummm….

Tl;dr: If your graph’s weights are all small positive integers, this reduction might work great.

Otherwise we probably need a new idea.

s

u

v

t
200

5000

5000

150

1

s

u

v

t
𝜋

0.5

5000

3

1

Weighted Graphs: Take 3

So we can’t just do a reduction.

Instead let’s try to figure out why BFS worked in the unweighted case, and try to make the
same thing happen in the weighted case.

Why did BFS work on unweighted graphs? How did we avoid this problem:

When we used a vertex u to update shortest paths we already knew the exact shortest path
to u. So we never ran into the update problem

So if we process the vertices in order of distance from s, we have a chance.

CSE 373 SP 18 - KASEY CHAMPION 16

s
tv

w

u

1

20

1

1 10 3

x

11

21

2

22

Weighted Graphs: Take 3

Goal: Process the vertices in order of distance from s

Idea:

Have a set of vertices that are “known”
- (we know at least one path from s to them).

Record an estimated distance
- (the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won’t ever find a shorter path
to a processed vertex.

CSE 373 SP 18 - KASEY CHAMPION 17

