
More Graphs! Data Structures and 

Algorithms
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Announcements

Project 2 Due Tonight!

HW 5 Due Wednesday

Project 3 released today – please check who your partner is and contact them TODAY. If you 
do not get a response by Sunday, contact the course staff for reassignment.
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Review

Path – A sequence of connected vertices (sometimes called a “walk”) 

(Directed) Path – A path in a directed graph must follow the direction of the edges

Path Length – The number of edges in a path (unweighted), sum of edges (weighted)

- (A,B,C,D) has length 3.

Simple Path – A path that doesn’t repeat vertices (except maybe first=last)

Cycle – A path that starts and ends at the same vertex (of length at least 1)
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Review: Connected Components

Connected Graph – A graph that has a path from every vertex to every other vertex (i.e. 
every vertex is reachable from every other vertex.

Strongly Connected Graph – A directed graph that is connected (note the direction of the 
edges!)

Weakly Connected Graph – A directed graph that is connected when interpreted as 
undirected. (Note all strongly connected graphs are also weakly connected)
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Paths and Reachability

Very common questions:

- Is there a path between two vertices? (Can I drive from Seattle to LA?)

- What is the length of the shortest path between two vertices? (How long will it take?)

- Can every vertex reach every other on a short path?

-7 degrees of Kevin Bacon

-Length of the longest shortest path is the “diameter” of a graph

Less common, but still important:

What is the longest path in a graph?
- In general a “hard”™ problem
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Trees

A tree is a connected, acyclic graph.

In a tree there exist exactly one path between every pair of vertices.

A graph consisting of several disconnected trees is called a forest.

The trees we have seen so far have been rooted trees – interpret one vertex as the root, and 
its neighbors are now children, and the root of their own subtrees.

How many edges does a tree with n vertices have? 
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n - 1



DAGs

DAG stands for Directed, Acyclic, Graph

This is the directed graph analog of a forest.

The trees we have made so far in this class have been implemented as weakly connected 
DAGs.

Can be used to represent dependencies: i.e. A must be completed before either B or C, and 
both B and C must be completed before D. Scheduling these tasks is called topological sort.
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Subgraphs

Take a graph, and delete vertices and edges so you still have a graph.

The remaining red vertices and edges form a subgraph.

Formally: 𝐺′ = 𝑉′, 𝐸′ ⊆ 𝐺 = 𝑉, 𝐸 ⇔ 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸 𝑎𝑛𝑑 𝐺′ 𝑖𝑠 𝑎 𝑔𝑟𝑎𝑝ℎ
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Interesting Subgraphs

Cliques
- A clique is a complete subgraph

- A maximal clique is a clique that you could not add any more vertices to and still have a clique. This is distinct 
from the maximum clique, which is the largest clique in a graph.
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Interesting Subgraphs

Connected Components
- A connected component is a maximal, connected subgraph

- In directed graphs, you have two kinds: strongly connected, and weakly connected:
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Interesting Subgraphs

A Spanning Tree is a subgraph that is both a tree and includes every vertex (it spans the 
graph).

Every connected graph has at least one spanning tree.

An important problem is finding the minimum spanning tree. We will learn 2 algorithms for 
this. It is useful for optimization tasks (e.g. minimum cost to build a road network).
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Graph Algorithms
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Traversing a Graph

In all previous data structures:
1. Start at first element

2. Move to next element

3. Repeat until end of elements

For graphs – Where do we start? How do we decide where to go next? When do we end?
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1. Pick any vertex to start, mark it “visited”

2. Put all neighbors of first vertex in a “to be visited” collection

3. Move onto next vertex in “to be visited” collection

4. Mark vertex “visited”

5. Put all unvisited neighbors in “to be visited”

6. Move onto next vertex in “to be visited” collection

7. Repeat…



Breadth First Search

Current node:

Queue:

Finished:
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search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty) 

current = toVisit.dequeue()

for (V : current.neighbors())

if (v is not visited) 

toVisit.enqueue(v)

mark v as visited

finished.add(current)



Breadth First Search Analysis

Visited:
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Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?

How many times do you traverse each edge?

1 time each

Max 2 times each

- Putting them into toVisit

- Checking if they’re visited

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty) 

current = toVisit.dequeue()

for (V : current.neighbors())

if (v is not visited) 

toVisit.enqueue(v)

mark v as visited

finished.add(current)



Depth First Search (DFS)

BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? Can you use a different data structure?

What if you used a stack instead?
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dfs(graph) 

toVisit.push(first vertex)

mark first vertex as visited

while(toVisit is not empty) 

current = toVisit.pop()

for (V : current.neighbors())

if (V is not visited) 

toVisit.push(v)

mark v as visited

finished.add(current)

bfs(graph) 

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty) 

current = toVisit.dequeue()

for (V : current.neighbors())

if (v is not visited) 

toVisit.enqueue(v)

mark v as visited

finished.add(current)



Depth First Search
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Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?

How many times do you traverse each edge?

1 time each

Max 2 times each

- Putting them into toVisit

- Checking if they’re visited

dfs(graph) 

toVisit.push(first vertex)

mark first vertex as visited

while(toVisit is not empty) 

current = toVisit.pop()

for (V : current.neighbors())

if (V is not visited) 

toVisit.push(v)

mark v as visited

finished.add(current)



Recursive DFS

DFS can be implemented using recursion as well:

dfs(vertex, visited) 

visited[vertex] = true

for each neighbor of vertex:

if not visited[neighbor]:

visited = dfs(neighbor, visited)

return visited

What about BFS? Not really. Function calls act like a stack, so DFS works well, but not DFS.
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