
Graphs Data Structures and 

Algorithms
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Warmup

Discuss with your neighbors:

Come up with as many kinds of relational data as you can (data that can be represented 
with a graph).
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Announcements

Project 2 Due on Friday

Next individual HW assignment assigned tonight, due next Wednesday
- Two problems – merge sort and graph practice

Sign up for Project 3 partners by Thursday night!

I am gone tonight through Tuesday. Robbie will be lecturing again. No instructor office hours tomorrow or 
Tuesday next week.
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Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges

- An edge is a connection between two vertices
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V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H), 

(C, B), (B, D), (D, E), (D, F),

(F, G), (G, H)}



Graph Vocabulary

Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

A : 1, B : 1, C : 1

- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1

- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
CSE 373 SP 18 - KASEY CHAMPION 5

A B

C

V = { A, B, C }

E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }

E = { (A, B), (B, C), (C, B) } A

B

C

Undirected Graph:

Undirected Graph:



Food for thought

Is a graph valid if there exists a vertex with a degree of 0?
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A has an “in degree” of 0
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B has an “out degree” of 0

A
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C has both an “in degree” 
and an “out degree” of 0

Is this a valid graph?

A

Yes!
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Are these valid?
Yup

Sure

Yes



Graph Vocabulary

Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

Complete graph – a graph with edges between every pair of vertices
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For simple, undirected graphs…

What is the fewest number of edges a graph with n vertices can have?

0

What is the sum of the degrees of all vertices in a graph? (in terms of |V| and |E|)

2|E|

What is the maximum number of edges a graph with n vertices can have?

n(n-1)/2 = 𝑂 𝑛2 - (the complete graph on n vertices 𝐾𝑛)
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Representing Graphs

Discuss with your neighbor: How would you implement a non-weighted, undirected graph?

Assume there are n vertices, and those vertices are numbered 0, 1, 2, …, n-1.

As an example:

G = (V, E)

V = {0,1,2,3,4,5,6}, E = { (0,1), (0,2), (1,3), (3,5), (4,5) }
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Representing Graphs
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Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0
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A matrix is a table of numbers, a[u][v].

In an adjacency matrix a[u][v] is 1 if there is an edge (u,v), 

and 0 otherwise.

Can represent both undirected and directed graphs

Can represent self-loops and parallel edges (interpret as 

the # of edges between two vertices

Time Complexity (|V| = n, |E| = m):

Add Edge: 

Remove Edge: 

Check edge exists from (u,v): 

Get neighbors of u (out): 
Get neighbors of u (in):

Space Complexity:

O(1)

O(1)
O(1)

O(n)
O(n)

𝑂(𝑛2)



Sparsity

A Dense Graph is a graph with many edges 𝐸 ≈ 𝑉 2

A Sparse Graph is a graph with few edges 𝐸 ≈ |𝑉|

Adjacency Matrices are very wasteful of space for spare graphs – they are almost all 0s!

How could we save space?
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Adjacency List
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1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the u’th element contains a list of neighbors of u.

Can represent both undirected and directed graphs

In the directed case, put the out neighbors (a[u] has v for all (u,v) in E)

Can represent self-loops and parallel edges (repeat neighbor)

Time Complexity (|V| = n, |E| = m):

Add Edge: 
Remove Edge: 

Check edge exists from (u,v): 

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

O(1)
O( min(n, m) )

O( min(n, m) )
O(n)

O(n + m)

O(n + m)



Graph Vocabulary

Weighted Graph – a graph with numeric weights associated with each edge

- can be directed or undirected

- weights can be negative, positive or 0

- common to specify “only non-negative edge weights”, or “only positive edge weights”

- denoted e = (u, v, w) or sometimes e = ((u,v), w)

- Weights often carry meaning such as “distance”, (e.g. driving time between cities)
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Representing Weighted Graphs

Adjacency Matrix – You can make the value of at each element the weight of the edge 

- In an int array (int[]) you can’t distinguish between 0 weight edge and no edge

- Solution 1 – You know ahead of time that 0 weight (or negative weight) edges

do not exist and use that to represent no edge

- Solution 2 (Java) – Use an Integer array (Integer[]) – have null represent no edge

Adjacency list – Store pairs (neighbor, edge weight)
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Storing Data In Graphs

We often have data associated with vertices and edges

Vertex Data Examples: 
- Facebook: Name, Age, Birthday, Hometown, Likes

- Google Maps: City name, elevation, hours of operation

- Internet: Page title, page contents, date last modified

Edge Data Examples: 
- Facebook: Date friendship was made, friend vs. acquaintance, etc.

- Google Maps: Length of road, speed limit
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Storing Data in Graphs

We could have a Graph<V, E> where V is a data type for Vertices and E is one for Edges

Adjacency Matrix: E[][] – now each entry has a pointer to edge data, or null if that edge is 
not in the graph

Adjacency List: E[] – the neighbor lists are now a list of edges

Both: Maintain a list V[] of vertices

Alternative Adjacency List: V[] just a list of vertices, where each vertex contains within it a list 
of (outgoing) edges. 
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Arrays → HashTables

When we analyze and describe graph algorithms, for simplicity we assume that each vertex has a 
unique identity 0, 1, 2, … n-1.

Accesses in Adjacency Matrices and getting an adjacency list are both worst case O(1) for arrays.

In reality, we often don’t have unique sequential integers for each vertex. In a real graph 
implementation, we often use HashMaps or HashSets.

This would get us average case O(1), but worst case O(n). This is bad in analysis, but fine in practice. 
An adjacency list that stores references to the actual vertex objects can avoid repeated table lookups.

We could always use a hash table to give unique integer IDs to every element, incurring an O(n) 
worst case, but O(1) average case overhead before each call (which can save our worst case analysis 
for any O(n) or slower algorithm), but we don’t usually bother to.

CSE 373 SU 18 – BEN JONES 18



Graph Vocabulary

Path – A sequence of connected vertices 

(Directed) Path – A path in a directed graph must follow the direction of the edges

Path Length (unweighted) – The number of edges in a path

- (A,B,C,D) has length 3.

Simple Path – A path that doesn’t repeat vertices (except maybe first=last)

Cycle – A path that starts and ends at the same vertex (of length at least 1)
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Graph Vocabulary

Connected Graph – A graph that has a path from every vertex to every other vertex (i.e. 
every vertex is reachable from every other vertex.

Strongly Connected Graph – A directed graph that is connected (note the direction of the 
edges!)

Weakly Connected Graph – A directed graph that is connected when interpreted as 
undirected. (Note all strongly connected graphs are also weakly connected)
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Paths and Reachability

Very common questions:

- Is there a path between two vertices? (Can I drive from Seattle to LA?)

- What is the length of the shortest path between two vertices? (How long will it take?)

Less common, but still important:

What is the longest path in a graph?
- In general a “hard”™ problem

- 7 degrees of Kevin Bacon

- Length of this path is called the “diameter” of a graph
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Trees

A tree is a connected, acyclic graph.

An a tree there exist exactly one path between every pair of vertices.

A graph consisting of several disconnected trees is called a forest.

The trees we have seen so far have been rooted trees – interpret one vertex as the root, and 
its neighbors are now children, and the root of their own subtrees.

How many edges does a tree with n vertices have? 
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DAGs

DAG stands for Directed, Acyclic, Graph

This is the directed graph analog of a forest.

The trees we have made so far in this class have been implemented as weakly connected 
DAGs.

Can be used to represent dependencies: i.e. A must be completed before either B or C, and 
both B and C must be completed before D. Scheduling these tasks is called topological sort.
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Subgraphs

Take a graph, and delete vertices and edges so you still have a graph.

The remaining red vertices and edges form a subgraph.

Formally: 𝐺′ = 𝑉′, 𝐸′ ⊆ 𝐺 = 𝑉, 𝐸 ⇔ 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸 𝑎𝑛𝑑 𝐺′ 𝑖𝑠 𝑎 𝑔𝑟𝑎𝑝ℎ
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Interesting Subgraphs

Cliques
- A clique is a complete subgraph

- A maximal clique is a clique that you could not add any more vertices to and still have a clique. This is distinct 
from the maximum clique, which is the largest clique in a graph.
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Interesting Subgraphs

Connected Components
- A connected component is a maximal, connected subgraph

- In directed graphs, you have two kinds: strongly connected, and weakly connected:
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Interesting Subgraphs

A Spanning Tree is a subgraph that is both a tree and includes every vertex (it spans the 
graph).

Every connected graph has at least one spanning tree. They are like skeletons of the graph.

An important problem is finding the minimum spanning tree. We will learn 2 algorithms for 
this. It is useful for optimization tasks (e.g. minimum cost to build a road network).
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Other interesting Graph Problems

- Circuits – paths or cycles that touch every vertex

- Reductions – Everything we’ve seen so far in this class can be represented as a graph – a 
lot of other problems can too! Graphs can solve many problems.
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