
Sorting Data Structures and 

Algorithms
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Warmup

Discuss with your neighbors:

What considerations do we think about when choosing a sorting algorithm?

So far we have seen: selection sort, insertion sort, and heap sort. What is the “main idea” 
behind each one? What are their properties? In which contexts are they better or worse?
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Warmup

Algorithm Main Idea Best Case Worst Case Average Case In Place? Stable?

Selection Sort Repeatedly find the next 

smallest element and put in 

front.

O(n^2) O(n^2) O(n^2) Yes Yes

Insertion Sort Pull the next unsorted 

element and insert into the 

proper position.

O(n) O(n^2) O(n^2) Yes Yes

Heap Sort Repeatedly pull the min 

element from a heap.

O(n log n) O(n log n) O(n log n) Can Be Yes

Merge Sort Recursively sort then merge 

the left and right halves.

O(n log n)* O(n log n) O(n log n) No ???
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Announcements

Individual Homework Due Tonight

Project 2 is assigned – it’s a one week project (so due on Friday)

Also by Friday: sign up for partner for project 3! https://goo.gl/forms/KYVCv4QddVN5Rbyi1

- Remember to sign up for a partner – you won’t automatically be re-partnered with the 
same person

- (for random partnering, we’ll assume your availability is the same as last time)

Course format change: Smaller homeworks, more frequently

- Should keep HW content closer to lecture content
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https://goo.gl/forms/KYVCv4QddVN5Rbyi1


Review: Selection Sort and Insertion Sort

https://visualgo.net/en/sorting
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Merge Sort
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https://www.youtube.com/watch?v=XaqR3G_NVoo
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Combine

https://www.youtube.com/watch?v=XaqR3G_NVoo


Merge Sort
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mergeSort(input) {

if (input.length == 1)

return

else

smallerHalf = mergeSort(new [0, ..., mid])

largerHalf = mergeSort(new [mid + 1, ...])

return merge(smallerHalf, largerHalf)

}
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Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

2T(n/2) + n otherwise

Yes

No

T(n) = 



Merge Sort Optimization

Use just two arrays – swap between them
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Another Optimization: Switch to Insertion Sort for small arrays (e.g. n < 10)



Merge Sort Benefits

Useful for massive data sets that cannot fit on one machine

Works well for linked-lists and other sequentially accessible data sets

A O(n log n) stable sort!

Easy to implement!
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mergeSort(input) {

if (input.length == 1)

return

else

smallerHalf = mergeSort(new [0, ..., mid])

largerHalf = mergeSort(new [mid + 1, ...])

return merge(smallerHalf, largerHalf)

}

Homework!



Quick Sort

Main Idea: Divide and Conquer – “smaller” “half” and “bigger” “half”

“smaller” and “bigger” relative to some pivot element

“half” doesn’t always mean half, but the closer it is to half, the better
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Quick Sort

Divide

Conquer

Combine
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https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ywWBy6J5gz8


Quick Sort
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quickSort(input) {

if (input.length == 1)

return

else

pivot = getPivot(input)

smallerHalf = quickSort(getSmaller(pivot, input))

largerHalf = quickSort(getBigger(pivot, input))

return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

n + T(n - 1) otherwise
T(n) = 

1 if n<= 1

n + 2T(n/2) otherwise
T(n) = 

No

No



Can we do better?

Pick a better pivot
- Pick a random number

- Pick the median of the first, middle and last element

Sort elements by swapping around pivot in place
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Better Quick Sort
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0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low

X < 6

High

X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low

X < 6

High

X >= 6



Project 2: Invariants, Pre-conditions, and post-
conditions
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Introduction to Graphs
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Inter-data Relationships

Arrays

Categorically associated

Sometimes ordered

Typically independent

Elements only store pure 
data, no connection info

CSE 373 SP 18 - KASEY CHAMPION 17

A

B C

Trees

Directional Relationships

Ordered for easy access

Limited connections

Elements store data and 
connection info

0 1 2

A B C

Graphs

Multiple relationship 
connections

Relationships dictate 
structure

Connection freedom!

Both elements and 
connections can store 
data

A

B

C



Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges

- An edge is a connection between two vertices
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A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H), 

(C, B), (B, D), (D, E), (D, F),

(F, G), (G, H)}



Applications

Physical Maps
- Airline maps

- Vertices are airports, edges are flight paths

- Traffic

- Vertices are addresses, edges are streets

Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases

- Vertices are classes, edges are usage

Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths 

Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com
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http://www.allthingsgraphed.com/


Graph Vocabulary

Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

A : 1, B : 1, C : 1

- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1

- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
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A B

C

V = { A, B, C }

E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }

E = { (A, B), (B, C), (C, B) } A

B

C

Undirected Graph:

Undirected Graph:



Food for thought

Is a graph valid if there exists a vertex with a degree of 0?
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A

B

C

A has an “in degree” of 0

A

B

C

B has an “out degree” of 0

A

B

C

C has both an “in degree” 
and an “out degree” of 0

Is this a valid graph?

A

Yes!

A B C
A B

CD

Are these valid?
Yup

Sure

Yes



Graph Vocabulary

Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges
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A B

A


