
Sorting Data Structures and 

Algorithms

CSE 373 SU 18 – BEN JONES 1



Warmup

Discuss with your neighbors:

What considerations do we think about when choosing a sorting algorithm?

So far we have seen: selection sort, insertion sort, and heap sort. What is the “main idea” 
behind each one? What are their properties? In which contexts are they better or worse?

CSE 373 SU 18 – BEN JONES 2



Warmup

Algorithm Main Idea Best Case Worst Case Average Case In Place? Stable?

Selection Sort Repeatedly find the next 

smallest element and put in 

front.

O(n^2) O(n^2) O(n^2) Yes Yes

Insertion Sort Pull the next unsorted 

element and insert into the 

proper position.

O(n) O(n^2) O(n^2) Yes Yes

Heap Sort Repeatedly pull the min 

element from a heap.

O(n log n) O(n log n) O(n log n) Can Be Yes

Merge Sort Recursively sort then merge 

the left and right halves.

O(n log n)* O(n log n) O(n log n) No ???

CSE 373 SU 18 – BEN JONES 3* there are O(n) best case variants of merge-sort used in practice



Announcements

Individual Homework Due Tonight

Project 2 is assigned – it’s a one week project (so due on Friday)

Also by Friday: sign up for partner for project 3! https://goo.gl/forms/KYVCv4QddVN5Rbyi1

- Remember to sign up for a partner – you won’t automatically be re-partnered with the 
same person

- (for random partnering, we’ll assume your availability is the same as last time)

Course format change: Smaller homeworks, more frequently

- Should keep HW content closer to lecture content

CSE 373 SU 18 – BEN JONES 4

https://goo.gl/forms/KYVCv4QddVN5Rbyi1


Review: Selection Sort and Insertion Sort

https://visualgo.net/en/sorting

CSE 373 SU 18 – BEN JONES 5

https://visualgo.net/en/sorting


Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 6

https://www.youtube.com/watch?v=XaqR3G_NVoo

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

https://www.youtube.com/watch?v=XaqR3G_NVoo


Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 7

mergeSort(input) {

if (input.length == 1)

return

else

smallerHalf = mergeSort(new [0, ..., mid])

largerHalf = mergeSort(new [mid + 1, ...])

return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

2T(n/2) + n otherwise

Yes

No

T(n) = 



Merge Sort Optimization

Use just two arrays – swap between them

CSE 373 SU 18 – BEN JONES 8

Another Optimization: Switch to Insertion Sort for small arrays (e.g. n < 10)



Merge Sort Benefits

Useful for massive data sets that cannot fit on one machine

Works well for linked-lists and other sequentially accessible data sets

A O(n log n) stable sort!

Easy to implement!

CSE 373 SU 18 – BEN JONES 9

mergeSort(input) {

if (input.length == 1)

return

else

smallerHalf = mergeSort(new [0, ..., mid])

largerHalf = mergeSort(new [mid + 1, ...])

return merge(smallerHalf, largerHalf)

}

Homework!



Quick Sort

Main Idea: Divide and Conquer – “smaller” “half” and “bigger” “half”

“smaller” and “bigger” relative to some pivot element

“half” doesn’t always mean half, but the closer it is to half, the better

CSE 373 SU 18 – BEN JONES 10



Quick Sort

Divide

Conquer

Combine

CSE 373 SP 18 - KASEY CHAMPION 11

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

0 1 2 3 4

2 1 6 7 4

0 1 2 3

91 22 57 10

0

8

0

6

0

6

0 2 3 4

2 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

0

8

https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ywWBy6J5gz8


Quick Sort

CSE 373 SP 18 - KASEY CHAMPION 12

0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

quickSort(input) {

if (input.length == 1)

return

else

pivot = getPivot(input)

smallerHalf = quickSort(getSmaller(pivot, input))

largerHalf = quickSort(getBigger(pivot, input))

return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

n + T(n - 1) otherwise
T(n) = 

1 if n<= 1

n + 2T(n/2) otherwise
T(n) = 

No

No



Can we do better?

Pick a better pivot
- Pick a random number

- Pick the median of the first, middle and last element

Sort elements by swapping around pivot in place

CSE 373 SP 18 - KASEY CHAMPION 13



Better Quick Sort

CSE 373 SP 18 - KASEY CHAMPION 14

0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low

X < 6

High

X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low

X < 6

High

X >= 6



Project 2: Invariants, Pre-conditions, and post-
conditions

CSE 373 SU 18 – BEN JONES 15



Introduction to Graphs

CSE 373 SP 18 - KASEY CHAMPION 16



Inter-data Relationships

Arrays

Categorically associated

Sometimes ordered

Typically independent

Elements only store pure 
data, no connection info

CSE 373 SP 18 - KASEY CHAMPION 17

A

B C

Trees

Directional Relationships

Ordered for easy access

Limited connections

Elements store data and 
connection info

0 1 2

A B C

Graphs

Multiple relationship 
connections

Relationships dictate 
structure

Connection freedom!

Both elements and 
connections can store 
data

A

B

C



Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges

- An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION 18

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H), 

(C, B), (B, D), (D, E), (D, F),

(F, G), (G, H)}



Applications

Physical Maps
- Airline maps

- Vertices are airports, edges are flight paths

- Traffic

- Vertices are addresses, edges are streets

Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases

- Vertices are classes, edges are usage

Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths 

Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com

CSE 373 SP 18 - KASEY CHAMPION 19

http://www.allthingsgraphed.com/


Graph Vocabulary

Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

A : 1, B : 1, C : 1

- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1

- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
CSE 373 SP 18 - KASEY CHAMPION 20

A B

C

V = { A, B, C }

E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }

E = { (A, B), (B, C), (C, B) } A

B

C

Undirected Graph:

Undirected Graph:



Food for thought

Is a graph valid if there exists a vertex with a degree of 0?

CSE 373 SP 18 - KASEY CHAMPION 21

A

B

C

A has an “in degree” of 0

A

B

C

B has an “out degree” of 0

A

B

C

C has both an “in degree” 
and an “out degree” of 0

Is this a valid graph?

A

Yes!

A B C
A B

CD

Are these valid?
Yup

Sure

Yes



Graph Vocabulary

Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

CSE 373 SP 18 - KASEY CHAMPION 22

A B

A


