
Priority Queues and
Heaps

Data Structures and

Algorithms

CSE 373 SU 18 – BEN JONES 1

Warm Up

CSE 373 SU 18 – BEN JONES 2

We have seen several data structures that can implement the Dictionary ADT so far: Arrays,
Binary (AVL) Trees, and Hash Tables.

1. Discuss with your neighbors the relative merits of each approach?

2. Is there any reason to choose an AVL Tree Dictionary over a Hash Table?

BST vs Hash Table

BST ADVANTAGES

CSE 373 SU 18 – BEN JONES & CSE 373 SU 17 LILIAN DE GREEF 3

Extra Operations: Get keys in sorted order,
ordering statistics (min-key, max-key, etc.),
“closest” elements, range queries

O(log n) worst case runtime guaranteed,
better than O(n) for hash tables

Easier to implement

HASH TABLE ADVANTAGES

O(1) Average Case Operations

Array Lookups can be an order of
magnitude faster than following references

How can we track the
“biggest” thing?

CSE 373 SU 18 – BEN JONES 4

Last class, a question was raised: couldn’t we

guarantee O(1) operations if we kept track of the

largest cluster in a hash table?

ADT: Priority Queue

A Priority Queue models a collection that is not First-In-First-Out (FIFO), but instead most-
important-in-first-out.

Example: Hospital emergency room. The patient who is most in danger is treated first.

Items in a priority queue are comparable, and the comparison determines priority. Often
this is done by inserting items as a pair: (item, priority).

Operations:

insert(item, [priority]) – adds an item to the queue with a given priority

deleteMin() – removes and returns the most-important item in the priority queue

peekMin() – returns the most-important item in the priority queue without removal

(This is a min priority queue. You can also have a max priority queue by swapping min/max.)

CSE 373 SU 18 – BEN JONES 5

Implementing Priority Queue

Idea Description removeMin() runtime peekMin() runtime insert() runtime

Unsorted ArrayList Linear collection of values, stored in an

Array, in order of insertion
O(n) O(n) O(1)

Unsorted LinkedList Linear collection of values, stored in Nodes,

in order of insertion
O(n) O(n) O(1)

Sorted ArrayList Linear collection of values, stored in an

Array, priority order maintained as items are

added

O(1) O(1) O(n)

Sorted Linked List Linear collection of values, stored in Nodes,

priority order maintained as items are added
O(1) O(1) O(n)

Binary Search Tree Hierarchical collection of values, stored in

Nodes, priority order maintained as items

are added

O(n) O(n) O(n)

AVL tree Balanced hierarchical collection of values,

stored in Nodes, priority order maintained

as items are added

O(logn) O(logn) O(logn)

CSE 373 SP 18 - KASEY CHAMPION 6

Heaps Priority Queue Data Structure

CSE 373 SU 18 – BEN JONES 7

Binary Heap

A type of tree with new set of invariants

1. Binary Tree: every node has at most 2
children

2. Heap: every node is smaller than its
child

CSE 373 SP 18 - KASEY CHAMPION 8

8

9 10 2

4 5

3

6 7

1

3. Structure: Each level is “complete” meaning it

has no “gaps”

- Heaps are filled up left to right

22

36 47

2

4

8 9 10

3

1

5

Self Check - Are these valid heaps?

CSE 373 SP 18 - KASEY CHAMPION 9

Binary Heap Invariants:

1. Binary Tree

2. Heap

3. Complete

2

3

5

7 8

4

9 11 10

5

9 8

6

7

4

3

7

1

6

INVALID INVALID VALID

Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 10

4

5 8

7

10

2

9

11 13

Implementing removeMin()

CSE 373 SP 18 - KASEY CHAMPION 11

4

5 8

7

10

2

9

11 13

Removing overallRoot creates a gap

Replacing with one of its children

causes lots of gaps

What node can we replace with

overallRoot that wont cause any gaps?

4

5 8

7

10

13

9

11

Structure maintained, heap broken

Fixing Heap – percolate down
Recursively swap parent with smallest child

CSE 373 SP 18 - KASEY CHAMPION 12

4

5 8

7

10

13

9

11

4

135

13

13

11

percolateDown(node) {
while (node.data is bigger than its children) {

swap data with smaller child
}

}

Self Check – removeMin() on this tree

CSE 373 SP 18 - KASEY CHAMPION 13

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

Implementing insert()

Insert a node to ensure no gaps

Fix heap invariant

percolate UP

CSE 373 SP 18 - KASEY CHAMPION 14

4

5 8

7

10

2

9

11 13 3

3

7

3

4

How long does percolating take?

Up and Down both go through all levels

- O(h)

How tall is the tree?

- Complete trees are always balanced (all leaves in level h or h+1)

- h = log n

So, percolation is O(log n)

CSE 373 SU 18 – BEN JONES 15

Finding the last child in a complete tree is
O(n)

Finding parents is difficult without back-
links (O(n)), so percolate-up is hard

CSE 373 SU 18 – BEN JONES 16

Problems

A

B C

D E F G

H I J

0 1 2 3 4 5 6 7 8 9 10 11

CSE 373 SU 18 – BEN JONES 17

A

B C

D E F G

H I J

0 1 2 3 4 5 6 7 8 9 10 11

Indices: min = last = insert location =

left child of i = right child of i = parent of i =

0 n - 1 n

2i + 1 2i + 2 (i - 1) / 2

Runtimes

Calculating Indices is ϴ(1)

peekMin = find min index = ϴ(1)

removeMin = find min index + find last index + swap + percolate down

= ϴ(1) + ϴ(1) + ϴ(1) + ϴ(log n)

= ϴ(log n)

insert = find insert location + add to array + percolate up

= ϴ(1) + ϴ(1) + ϴ(log n)

= ϴ(log n)

CSE 373 SU 18 – BEN JONES 18

How Long to build a heap from scratch?

n inserts at ϴ(log n) gives ϴ(n log n)

But early inserts don’t need to percolate as far, is it actually better?

෍

𝑖=0

log 𝑛

2𝑖 ⋅ ⅈ

No.

The basic strategy here was to always percolate up from the bottom. This means the largest
layer needs to percolate the farthest.

Can we do better?

CSE 373 SU 18 – BEN JONES 19

= 𝜃 𝑛 log𝑛

Floyd’s Build Heap

Main Idea: Start from the bottom (end of array) and percolate down.

This ensures that the largest layer has the least distance to percolate.

We start with the structural invariants (complete binary tree) fulfilled, and then fix the
ordering invariant (the heap property – parents smaller than children)

After each percolation, the subtree rooted at the percolated node is a valid min-heap!

buildHeap(array) – Modifies an array in-place to be a heap

CSE 373 SU 18 – BEN JONES 20

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 21

8

12

5

3

4

11

7

10

1

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 1 7 6

1. Add all values to back of array

2. percolateDown(parent) starting at last index

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 1, 7, 6

12 5 11 3 10 2 9

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 22

8

12

5

3

4

11

7

10

1

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 1 7 6

1. Add all values to back of array

2. percolateDown(parent) starting at last index

1. percolateDown level 3

2. percolateDown level 2

3. percolateDown level 1

4. percolateDown level 0

Build a tree with the values:

12, 5, 11, 3, 10, 2, 9, 4, 8, 1, 7, 6

12 5 11 3 10 2 9

7

10

2

11

3

5

2

11

Floy’d buildHeap Runtime

For repeated inserts we had ෌
𝑖=0

log 𝑛
2𝑖 ⋅ ⅈ

Work per node at the i-th level is now (log n – i) since we percolate down

෍

𝑖=0

log 𝑛

2𝑖 ⋅ (log 𝑛 − ⅈ) = 𝜃 𝑛

CSE 373 SU 18 – BEN JONES 23

Heap Sort

Can we use a heap to sort data?

Yes! Heap Sort: repeatedly removeMin, and add this to an output array.

This takes an extra array of space. Can we do better?

Yes! Re-use the space vacated at the end of the array after each remove.

This reverses the sorting order – either reverse the list (O(n)), or use a max-heap!

CSE 373 SU 18 – BEN JONES 24

In Place Heap Sort

CSE 373 SP 18 - KASEY CHAMPION 25

public void inPlaceHeapSort(collection) {

E[] heap = buildHeap(collection)

for (n)

output[n – i - 1] = removeMin(heap)

}

Worst case runtime?

Best case runtime?

Average runtime?

O(nlogn)

O(nlogn)

O(nlogn)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed!

- Run reverse afterwards (O(n))

- Use a max heap

- Reverse compare function to emulate max heap

Announcements

Midterm is next Friday in class

- All material up to and including next Monday’s lecture is fair game

HW3 (an individual written assignment) will be posted soon

- Excellent midterm review (similar questions)

- Due after midterm, but HIGHLY SUGGESTED you at least solve, if not write up, all of the
questions before midterm as studying.

Project 1 is due Friday by midnight

CSE 373 SU 18 – BEN JONES 26

