ISt |
AT P W TS

Hash Open Indexing | 5o s

CSE 373 SP 18 - KASEY CHAMPION

Warm Up

Discuss with your neighbors:

- What is a collision in a hash table, and how can we handle it?

- What is the load factor?

- What is the probability of a collision in a hash table?

- What's the worst case time complexity for adding an element to a hash table? Why?

- What's the expected case time complexity for adding an element to a hash table? Why?

CSE 373 SU 18 — BEN JONES 2

Handling Collisions

Each space holds a “bucket” that can store multiple values. Bucket is often implemented

with a LinkedList
Operation Array w/ indices as keys

best o)

put(key,value) average O+ A)
worst O(n)
best o)

get(key) average o1 + A
worst O(n)
best O(1)

remove(key) average O(1+ A
worst O(n)

Average Case:

Depends on average number of A
elements per chain st %
e m@‘
W
Load Factor A &S t
If n is the total number of key- \6 ’
value pairs \w)f
Let ¢ be the capacity of array i)‘/\iﬁ
Load Factor A D O =¢D O(pw o
© = ’f\"'\,;,dp;’“k
LUZATNY
et &
OCH'O) %;@W"”
l)l.s 0\“%‘
“hn

Handling Collisions

Resolves collisions by choosing a different location to tore a value if natural choice is

already full. P
T XA\

If there is a collision, keep checking the next element until we find an open spot.
public int hashFunction (String s)
int naturalHash = this.getHash(s);
1f (natural hash in use) {
int 1 = 1;
while (index 1n use) {
try (naturalHash + 1);
i++;

Type 1: Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 4

Linear Probing

Insert the following values into the Hash Table using a hashFunction of % table size
and linear probing to resolve collisions

1,5 M,7,12,7,6,25

11

12

25

17

CSE 373 SP 18 - KASEY CHAMPION

5

Linear Probing

Insert the following values into the Hash Table using a hashFunction of % table size
and linear probing to resolve collisions
38,19, 8,109, 10

10

38

109

Linear probing causes clustering
Clustering causes more looping when probing

Primary Clustering

When probing causes long chains of
occupied slots within a hash table

CSE 373 SP 18 - KASEY CHAMPION

6

Runtime

When is runtime good?

Empty table Average number of probes for

successful probe:

When is runtime bad? 1 1
— (1 4+ —

Table nearly full 2 1-2

When we hit a “cluster” Average number of probes for

unsuccessful probe:

1
(1—7\)2)

Maximum Load Factor? %(1 +
A at most 1.0

When do we resize the array?
A=

CSE 373 SP 18 - KASEY CHAMPION 7

Can we do better?

Clusters are caused by picking new space near natural index

Type 2: Quadratic Probing

If we collide instead try the next i% space
public int hashFunction (String s)
int naturalHash = this.getHash(s);
1f (natural hash 1in use) {
int 1 = 1;
while (index 1in use) {
try (naturalHash + 1 * 1);
1++;

CSE 373 SP 18 - KASEY CHAMPION 8

Quadratic Probing

Insert the following values into the Hash Table using a hashFunction of % table size

and quadratic probing to resolve collisions

89, 18, 49, 58, 79

58

79

18

(49% 10 +0*0) %10 =9
(49%10+1*1) %10 =0

(58% 10 +0*0) %10 =8
58% 10 +1*1) %10 =9
58 %10 +2*2) %10 =2

(79% 10 +0*0) %10 =9
79% 10 +1*1) %10 =0
79% 10 +2*2) %10 =3

Problems:

If A> 2 we might never find an empty spot

Infinite loop!
Can still get clusters

CSE 373 SP 18 - KASEY CHAMPION

9

Secondary Clustering

Insert the following values into the Hash Table using a hashFunction of % table size
and quadratic probing to resolve collisions

19, 39, 29,9

39

29

19

Secondary Clustering

When using quadratic probing sometimes
need to probe the same sequence of table
cells, not necessarily next to one another

CSE 373 SP 18 - KASEY CHAMPION

10

Probing

h(k) = the natural hash

h'(k, i) = resulting hash after probing
| = iteration of the probe

T = table size

Linear Probing:

hk, D)=tk +)%T
Quadratic Probing
h'(k,) = (h(k) +i9) % T

For both types there are only O(T) probes available
Can we do better?

CSE 373 SP 18 - KASEY CHAMPION i

Double Hashing

Probing causes us to check the same indices over and over- can we check different ones
Insteaq?

Use a second hash function!

h'(k,) = (h(k) +1* &@) % T <- Most effective if g(k) returns value prime to table size

public int hashFunction (String s)
int naturalHash = this.getHash(s);
1f (natural hash in use) {
int 1 = 1;
while (index 1n use) {

try (naturalHash + 1 * jump Hash (key));
1++;

CSE 373 SP 18 - KASEY CHAMPION 12

Second Hash Function

Effective if g(k) returns a value that is relatively prime to table size
If T is a power of 2, make g(k) return an odd integer

If T is a prime, make g(k) return any smaller, non-zero integer
g(k) =1+ (k % T(-1))

How many different probes are there?

T different starting positions J cﬂb‘w e O\\SL!J/IC@S
T—"1jump intervals £— (emes 'CMSW\ g(@ Qﬁ‘(WGM] bTTl (‘Jp —‘—dj‘wa '\’\f\’rl‘ Looam pﬁus

O(T?) different probe sequences
(T9) P q bk e o2 5'}7««46&

Linear and quaderatic only offer O(T) sequences
K
(0@ +1%T) 1T =0
for oy ”‘l“’(}e(v

CSE 373 SP 18 - KASEY CHAMPION 13

Summary

1. Pick a hash function to:
Avoid collisions
Uniformly distribute data
Reduce hash computational costs

2. Pick a collision strategy

Chammg No clustering
LinkedList Potentially more “compact” (A can be higher)
AVL Tree
Probing Managing clustering can be tricky
Linear 1
oot Less compact (keep A < 3)
Array lookups tend to be a constant factor faster than traversing pointers

Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 14

CSE 373 SP 18 - KASEY CHAMPION 15

