
Hash Open Indexing Data Structures and 

Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1



Warm Up

CSE 373 SU 18 – BEN JONES 2

Discuss with your neighbors:

- What is a collision in a hash table, and how can we handle it?

- What is the load factor?

- What is the probability of a collision in a hash table?

- What’s the worst case time complexity for adding an element to a hash table? Why?

- What’s the expected case time complexity for adding an element to a hash table? Why?



Review: Handling Collisions

Solution 1: Chaining

Each space holds a “bucket” that can store multiple values. Bucket is often implemented 
with a LinkedList

CSE 373 SP 18 - KASEY CHAMPION 3

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1 + λ)

worst O(n)

get(key)

best O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

average O(1 + λ)

worst O(n)

Average Case:

Depends on average number of 

elements per chain

Load Factor λ

If n is the total number of key-

value pairs

Let c be the capacity of array

Load Factor λ = 
𝑛

𝑐



Handling Collisions

Solution 2: Open Addressing

Resolves collisions by choosing a different location to tore a value if natural choice is 
already full. 

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot. 
public int hashFunction(String s) 

int naturalHash = this.getHash(s);

if(natural hash in use) {

int i = 1;

while (index in use) {

try (naturalHash + i);

i++;

CSE 373 SP 18 - KASEY CHAMPION 4



Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 18 - KASEY CHAMPION 5

Insert the following values into the Hash Table using a hashFunction of % table size 

and linear probing to resolve collisions

1, 5, 11, 7, 12, 7, 6, 25

1 511 712 17625



Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 6

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size 

and linear probing to resolve collisions

38, 19, 8, 109, 10

38 1988 10910

Problem:

• Linear probing causes clustering

• Clustering causes more looping when probing

Primary Clustering

When probing causes long chains of 

occupied slots within a hash table



Runtime

When is runtime good?

Empty table

When is runtime bad?

Table nearly full

When we hit a “cluster”

Maximum Load Factor?

λ at most 1.0

When do we resize the array?

λ ≈ ½ 

CSE 373 SP 18 - KASEY CHAMPION 7

Average number of probes for 
successful probe:

1

2
(1 +

1

1−λ
)

Average number of probes for 
unsuccessful probe:

1

2
(1 +

1

1−λ 2)



Can we do better?

Clusters are caused by picking new space near natural index

Solution 2: Open Addressing

Type 2: Quadratic Probing

If we collide instead try the next i2 space

public int hashFunction(String s) 

int naturalHash = this.getHash(s);

if(natural hash in use) {

int i = 1;

while (index in use) {

try (naturalHash + i);

i++;

CSE 373 SP 18 - KASEY CHAMPION 8

i * i);



Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 9

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9

(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8

(58 % 10 + 1 * 1) % 10 = 9

(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size 

and quadratic probing to resolve collisions

89, 18, 49, 58, 79

58 79

(79 % 10 + 0 * 0) % 10 = 9

(79 % 10 + 1 * 1) % 10 = 0

(79 % 10 + 2 * 2) % 10 = 3

Problems:

If λ≥ ½ we might never find an empty spot

Infinite loop!

Can still get clusters



Secondary Clustering

CSE 373 SP 18 - KASEY CHAMPION 10

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size 

and quadratic probing to resolve collisions

19, 39, 29, 9

39 29 199

Secondary Clustering

When using quadratic probing sometimes 

need to probe the same sequence of table 

cells, not necessarily next to one another



Probing

- h(k) = the natural hash 

- h’(k, i) = resulting hash after probing

- i = iteration of the probe

- T = table size

Linear Probing:

h’(k, i) = (h(k) + i) % T

Quadratic Probing

h’(k, i) = (h(k) + i2) % T

For both types there are only O(T) probes available
- Can we do better?

CSE 373 SP 18 - KASEY CHAMPION 11



Double Hashing

Probing causes us to check the same indices over and over- can we check different ones 
instead?

Use a second hash function!

h’(k, i) = (h(k) + i * g(k)) % T

public int hashFunction(String s) 

int naturalHash = this.getHash(s);

if(natural hash in use) {

int i = 1;

while (index in use) {

try (naturalHash + i * jump_Hash(key));

i++;

CSE 373 SP 18 - KASEY CHAMPION 12

<- Most effective if g(k) returns value prime to table size



Second Hash Function

Effective if g(k) returns a value that is relatively prime to table size
- If T is a power of 2, make g(k) return an odd integer

- If T is a prime, make g(k) return any smaller, non-zero integer

- g(k) = 1 + (k % T(-1))

How many different probes are there?

- T different starting positions

- T – 1 jump intervals

- O(T2) different probe sequences

- Linear and quadratic only offer O(T) sequences

CSE 373 SP 18 - KASEY CHAMPION 13



Summary

1. Pick a hash function to:
- Avoid collisions

- Uniformly distribute data

- Reduce hash computational costs

2. Pick a collision strategy
- Chaining

- LinkedList

- AVL Tree

- Probing

- Linear

- Quadratic

- Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 14

No clustering

Potentially more “compact” (λ can be higher)

Managing clustering can be tricky

Less compact (keep λ < ½)

Array lookups tend to be a constant factor faster than traversing pointers



CSE 373 SP 18 - KASEY CHAMPION 15


