
Introduction to Hash
Tables

Data Structures and

Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1

Announcements

I’m not Ben – I’m Robbie

Your checkpoint is due tonight at midnight

Tag your commit with SUBMIT-CHECKPOINT

Right click on the project -> team ->advanced -> tag.

Look closely at the last screen, there may be multiple checkboxes to check.

On your projects, you should be pair programming

You are expected to understand every line of code your group submits.

Implementation details are fair game for the midterm!

CSE 373 SP 18 - KASEY CHAMPION 2

Warm Up Review

Draw the AVL tree that results from inserting 8, 9, 10, 12, 11.

CSE 373 SP 18 - KASEY CHAMPION 3

Tree Rotations

CSE 373 SU 18 – BEN JONES 4

X

A

W

C

B

Y Z

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 5

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 6

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 7

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 8

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 9

8

9

10

11

12

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced

2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]

2. More space for height field

3. Asymptotically faster but rebalancing takes a little time

4. If amortized logarithmic time is enough, use splay trees (also in the text, not covered in this class)

CSE 373 SU 17 – LILIAN DE GREEF 10

Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:

AVL tree

Splay tree

2-3 tree

AA tree

Red-black tree

Scapegoat tree

Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in

the textbook and all of them are online!)

CSE 373 SU 17 – LILIAN DE GREEF

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations

The Story So Far…

Why are we so obsessed with Dictionaries? It’s all about data baby!

When dealing with data:
- Adding data to your collection

- Getting data out of your collection

- Rearranging data in your collection

CSE 373 SP 18 - KASEY CHAMPION 12

Operation ArrayList LinkedList BST AVLTree

put(key,value)

best O(1) O(1) O(1) O(1)

average O(n) O(1) O(logn) O(logn)

worst O(n) + arrayExpansion O(1) O(n) O(logn)

get(key)

best O(1) O(1) O(1) O(1)

average O(n), O(logn) if sorted O(n) O(logn) O(logn)

worst O(n) O(n) O(n) O(logn)

remove(key)

best O(1) O(1) O(logn) O(1)

average O(n) O(n) O(logn) + replace O(logn)

worst O(n) O(n) O(n) + replace O(logn) + rotation

Can we do better?

Implement a dictionary that accepts only integer keys between 0 and some value k

Leverage Array Indices!

CSE 373 SP 18 - KASEY CHAMPION 13

Operation Array w/ indices as keys

put(key,value)

best

average

worst

get(key)

best

average

worst

remove(key)

best

average

worst

“Direct address map”

Can we do better?

Implement a dictionary that accepts only integer keys between 0 and some value k

Leverage Array Indices!

CSE 373 SP 18 - KASEY CHAMPION 14

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1)

worst O(1) + arrayExpansion

get(key)

best O(1)

average O(1)

worst O(1)

remove(key)

best O(1)

average O(1)

worst O(1)

“Direct address map”

Implement Direct Access Map

public V get(int key) {

this.ensureIndexNotNull(key);

return this.array[key].value;

}

public void put(int key, V value) {

this.array[key] = value;

}

public void remove(int key) {

this.entureIndexNotNull(key);

this.array[key] = null;

}

CSE 373 WI 18 – MICHAEL LEE 15

Can we do this for any integer?

Idea 1:

Create a GIANT array with every possible integer as an index

Problems:
- Can we allocate an array big enough?

- Super wasteful

Idea 2:

Create a smaller array, but create a way to translate given integer keys into available indices

Problem:
- How can we pick a good translation?

CSE 373 SP 18 - KASEY CHAMPION 16

Review: Integer remainder with %

The % operator computes the remainder from integer division.

14 % 4 is 2

3 43

4) 14 5) 218

12 20

2 18

15

3

Applications of % operator:

- Obtain last digit of a number: 230857 % 10 is 7

- See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

- Limit integers to specific range: 8 % 12 is 8, 18 % 12 is 6

CSE 142 SP 18 – BRETT WORTZMAN 17

218 % 5 is 3

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

element

s

CSE 373 SP 18 - KASEY CHAMPION 18

put(0, “foo”);

put(5, “bar”);

put(11, “biz”)

put(18, “bop”);

put(20, “poo”); Collision!

“foo”

0 % 10 = 0

5 % 10 = 5

11 % 10 = 1

18 % 10 = 8

20 % 10 = 0

“bop”“bar”“biz”“poo”

Implement First Hash Function

public V get(int key) {

int newKey = key % this.array.length;

this.ensureIndexNotNull(key);

return this.array[key].value;

}

public void put(int key, V value) {

this.array[key % this.array.length] = value;

}

public void remove(int key) {

int newKey = key % this.array.length;

this.entureIndexNotNull(key);

this.array[key] = null;

}

CSE 373 SP 18 - KASEY CHAMPION 19

Hash Obsession: Collisions

When multiple keys translate to the same location of the array

The fewer the collisions, the better the runtime!

CSE 373 SP 18 - KASEY CHAMPION 20

Handling Collisions

Solution 1: Chaining

Each space holds a “bucket” that can store multiple values. Bucket is often implemented
with a LinkedList

CSE 373 SP 18 - KASEY CHAMPION 21

Operation Array w/ indices as keys

put(key,value)

best

average

worst

get(key)

best

average

worst

remove(key)

best

average

worst

Handling Collisions

Solution 1: Chaining

Each space holds a “bucket” that can store multiple values. Bucket is often implemented
with a LinkedList

CSE 373 SP 18 - KASEY CHAMPION 22

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1 + λ)

worst O(n)

get(key)

best O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

average O(1 + λ)

worst O(n)

Average Case:

Depends on average number of

elements per chain

Load Factor λ

If n is the total number of key-

value pairs

Let c be the capacity of array

Load Factor λ =
𝑛

𝑐

Practice

Consider an IntegerDictionary using separate chaining with an internal capacity of 10.
Assume our buckets are implemented using a LinkedList where we append new key-value
pairs to the end.

Now, suppose we insert the following key-value pairs. What does the dictionary internally
look like?

(1, a) (5,b) (11,a) (7,d) (12,e) (17,f) (1,g) (25,h)

CSE 373 WI 18 – MICHAEL LEE 23

0 1 2 3 4 5 6 7 8 9

(1, a) (5, b)

(11, a) (17, f)

(1, g) (12, e) (7, d)

(25, h)

Can we do better?

Idea 1: Take in better keys
-Can’t do anything about that right now

Idea 2: Optimize the bucket
-Use an AVL tree instead of a Linked List
-Java starts off as a linked list then converts to AVL tree when collisions get large

Idea 3: Modify the array’s internal capacity
-When load factor gets too high, resize array

- Double size of array

- Increase array size to next prime number that’s roughly double the array size

- Prime numbers reduce collisions when using % because of divisors

- Resize when λ ≈ 1.0

- When you resize, you have to rehash

CSE 373 SP 18 - KASEY CHAMPION 24

What about non integer keys?

Hash Function

An algorithm that maps a given key to an integer representing the index in the array for
where to store the associated value

Goals

Avoid collisions
- The more collisions, the further we move away from O(1)

- Produce a wide range of indices

Uniform distribution of outputs
- Optimize for memory usage

Low computational costs
- Hash function is called every time we want to interact with the data

CSE 373 SP 18 - KASEY CHAMPION 25

How to Hash non Integer Keys

Implementation 1: Simple aspect of values
public int hashCode(String input) {

return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {

int output = 0;
for(char c : input) {

out += (int)c;
}
return output;

}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {

int output = 1;
for (char c : input) {

int nextPrime = getNextPrime();
out *= Math.pow(nextPrime, (int)c);

}
return Math.pow(nextPrime, input.length());

}

CSE 373 SP 18 - KASEY CHAMPION 26

Pro: super fast O(1)

Con: lots of collisions!

Pro: fast O(n)

Con: some collisions

Pro: few collisions

Con: slow, gigantic integers

Balanced Hash Function

public int hashCode(String input) {

int accum = 1;

int output = 0;

for (char c : input) {

out += accum * (int)c;

accum *= 31;

}

return output;

}

CSE 373 SP 18 - KASEY CHAMPION 27

Pretty fast, O(n)

Uses both character values and positions, few collisions

Why 31? Magical research!

Practice

Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume
our buckets are implemented using a LinkedList. Use the following hash function:

public int hashCode(String input) {

return input.length() % arr.length;

}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

CSE 373 SP 18 - KASEY CHAMPION 28

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3) (“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”,
6)

Java and Hash Functions

Object class includes default functionality:
- equals

- hashCode

If you want to implement your own hashCode you MUST:
- Override BOTH hashCode() and equals()

- If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true

CSE 373 SP 18 - KASEY CHAMPION 29

Another Way to Deal With Collisions

Our strategy today:
-Find some way to store the new element where the hash function wanted to put it.

Alternative strategy:
just put it somewhere nearby

Two problems:
-What’s nearby?
How do we make sure we can find it later?

Ben will tell you on Monday!

CSE 373 SP 18 - KASEY CHAMPION 30

