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Warm Up

What is the runtime for get, put, and remove of an ArrayDictionary?

Can you think of a way of making it better?
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Finding your partner

Your repository will be titled

project1-NETID1-NETID2

To find your partner, take the NETID that isn’t yours, add @uw.edu, and e-mail them!

If that still doesn’t work, e-mail the course staff and we’ll send an introductory e-mail to the 
two of you.
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Storing Items in an Array

get(key):

put(key, value):

remove():
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3 4 7 9 10 12 15Key

Value “dog” “cat” “bird” “horse” “oxen” “ferret” “moose”



Storing Sorted Items in an Array

get(key):

put(key, value):

remove():
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Storing Sorted Items in an Array

get() – O(logn)

put() – O(n)

remove() – O(n)

Can we do better with insertions and removals?
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Trees!

A tree is a collection of nodes
- Each node has at most 1 parent and 0 or more children

Root node: the single node with no parent, “top” of 
the tree

Branch node: a node with one or more children

Leaf node: a node with no children

Edge: a pointer from one node to another

Subtree: a node and all it descendants

Height: the number of edges contained in the 
longest path from root node to some leaf node 
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Tree Height

What is the height of the following trees?
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Traversals

traversal: An examination of the elements of a tree.
– A pattern used in many tree algorithms and methods

Common orderings for traversals:
– pre-order: process root node, then its left/right subtrees

– 17 41 29 6 9 81 40

– in-order: process left subtree, then root node, then right
– 29 41 6 17 81 9 40

– post-order: process left/right subtrees, then root node
– 29 6 41 81 40 9 17

Traversal Trick: Sailboat method
– Trace a path around the tree.

– As you pass a node on the
proper side, process it.
• pre-order: left side

• in-order: bottom

• post-order: right side
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Binary Search Trees

A binary search tree is a binary tree that contains comparable items such that for every 
node, all children to the left contain smaller data and all children to the right contain larger 
data.
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Implement Dictionary

Binary Search Trees allow us to:
- quickly find what we’re looking for

- add and remove values easily

Dictionary Operations:

Runtime in terms of height, “h”

get() – O(h)

put() – O(h)

remove() – O(h)

What do you replace the node with?

Largest in left sub tree or smallest in right sub tree
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Practice

What will the binary search tree look like if you insert nodes in the following order:

5, 8, 7, 10, 9, 4, 2, 3, 1

What is the pre-order traversal order for the resulting tree?

CSE 373 SP 18 - KASEY CHAMPION 12



Height in terms of Nodes

For “balanced” trees h ≈ logc(n) where c is the maximum number of children

Balanced binary trees h ≈ log2(n)

Balanced trinary tree h ≈ log3(n)

Thus for balanced trees operations take Θ(logc(n))
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Unbalanced Trees

Is this a valid Binary Search Tree?

Yes, but…

We call this a degenerate tree

For trees, depending on how balanced they are,

Operations at worst can be O(n) and at best

can be O(logn)

How are degenerate trees formed?
- insert(10)

- insert(9)

- insert(7)

- insert(5)
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Measuring Balance

Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1
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Meet AVL Trees

AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children

- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree 
must be larger than the root node

- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the 
right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)
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Is this a valid AVL tree?
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Is this a valid AVL tree?
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Is this a valid AVL tree?
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Implementing an AVL tree dictionary

Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - ???

remove() - ???
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Rotations!
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Rotations!
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Practice
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Practice
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So much can go wrong
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Two AVL Cases
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Double Rotations 1
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