
Binary Search Trees Data Structures and 

Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1



Warm Up

What is the runtime for get, put, and remove of an ArrayDictionary?

Can you think of a way of making it better?

CSE 373 SP 18 - KASEY CHAMPION 2



Finding your partner

Your repository will be titled

project1-NETID1-NETID2

To find your partner, take the NETID that isn’t yours, add @uw.edu, and e-mail them!

If that still doesn’t work, e-mail the course staff and we’ll send an introductory e-mail to the 
two of you.

CSE 373 SP 18 - KASEY CHAMPION 3



Storing Items in an Array

get(key):

put(key, value):

remove():

CSE 373 SP 18 - KASEY CHAMPION 4

3 4 7 9 10 12 15Key

Value “dog” “cat” “bird” “horse” “oxen” “ferret” “moose”



Storing Sorted Items in an Array

get(key):

put(key, value):

remove():

CSE 373 SP 18 - KASEY CHAMPION 5

347 91012 15Key

Value “dog”“cat”“bird” “horse”“oxen”“ferret” “moose”



Storing Sorted Items in an Array

get() – O(logn)

put() – O(n)

remove() – O(n)

Can we do better with insertions and removals?

CSE 373 SP 18 - KASEY CHAMPION 6



Trees!

A tree is a collection of nodes
- Each node has at most 1 parent and 0 or more children

Root node: the single node with no parent, “top” of 
the tree

Branch node: a node with one or more children

Leaf node: a node with no children

Edge: a pointer from one node to another

Subtree: a node and all it descendants

Height: the number of edges contained in the 
longest path from root node to some leaf node 

CSE 373 SP 18 - KASEY CHAMPION 7

1

2 5

3 6 7

4 8



Tree Height

What is the height of the following trees?

CSE 373 SP 18 - KASEY CHAMPION 8

1

2 5

7

7

overallRoot overallRoot overallRoot

null

Height = 2 Height = 0 Height = -1 or NA



Traversals

traversal: An examination of the elements of a tree.
– A pattern used in many tree algorithms and methods

Common orderings for traversals:
– pre-order: process root node, then its left/right subtrees

– 17 41 29 6 9 81 40

– in-order: process left subtree, then root node, then right
– 29 41 6 17 81 9 40

– post-order: process left/right subtrees, then root node
– 29 6 41 81 40 9 17

Traversal Trick: Sailboat method
– Trace a path around the tree.

– As you pass a node on the
proper side, process it.
• pre-order: left side

• in-order: bottom

• post-order: right side

CSE 373 SP 17 – ZORA FUNG 9

4081

941

17

629

overallRoot



Binary Search Trees

A binary search tree is a binary tree that contains comparable items such that for every 
node, all children to the left contain smaller data and all children to the right contain larger 
data.

CSE 373 SP 18 - KASEY CHAMPION 10

10

9 15

7 12 18

8 17



Implement Dictionary

Binary Search Trees allow us to:
- quickly find what we’re looking for

- add and remove values easily

Dictionary Operations:

Runtime in terms of height, “h”

get() – O(h)

put() – O(h)

remove() – O(h)

What do you replace the node with?

Largest in left sub tree or smallest in right sub tree

CSE 373 SP 18 - KASEY CHAMPION 11

10

“foo”

7

“bar”

12

“baz”

9

“sho”

5

“fo”

15

“sup”

13

“boo”

8

“poo”

1

“burp”



Practice

What will the binary search tree look like if you insert nodes in the following order:

5, 8, 7, 10, 9, 4, 2, 3, 1

What is the pre-order traversal order for the resulting tree?

CSE 373 SP 18 - KASEY CHAMPION 12



Height in terms of Nodes

For “balanced” trees h ≈ logc(n) where c is the maximum number of children

Balanced binary trees h ≈ log2(n)

Balanced trinary tree h ≈ log3(n)

Thus for balanced trees operations take Θ(logc(n))

CSE 373 SP 18 - KASEY CHAMPION 13



Unbalanced Trees

Is this a valid Binary Search Tree?

Yes, but…

We call this a degenerate tree

For trees, depending on how balanced they are,

Operations at worst can be O(n) and at best

can be O(logn)

How are degenerate trees formed?
- insert(10)

- insert(9)

- insert(7)

- insert(5)

CSE 373 SP 18 - KASEY CHAMPION 14

10

9

7

5



Measuring Balance

Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1

CSE 373 SP 18 - KASEY CHAMPION 15

10

8 15

7 12 18

8

7

7
8

7 9



Meet AVL Trees

AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children

- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree 
must be larger than the root node

- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the 
right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 16



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 17

7

4 10

3 9 125

8 11 13

14

2 6

Is it…

- Binary

- BST

- Balanced?

yes

yes

yes



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 18

6

2 8

1 7 124

9

10 13

11

3 5

Is it…

- Binary

- BST

- Balanced?

yes

yes

no

Height = 2Height = 0



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 19

8

6 11

2 157

-1 9

Is it…

- Binary

- BST

- Balanced?

yes

no

yes

9 > 85



Implementing an AVL tree dictionary

Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - ???

remove() - ???

CSE 373 SP 18 - KASEY CHAMPION 20

Add the node to keep BST, fix AVL property if necessary

Replace the node to keep BST, fix AVL property if necessary

1

2

3

Unbalanced!

2

1 3



Rotations!

CSE 373 SP 18 - KASEY CHAMPION 21

a

b

X

c

Y Z

a

b

X

Y Z c

a

b

X Y

Z

Insert ‘c’

Unbalanced!
Balanced!



Rotations!

CSE 373 SP 18 - KASEY CHAMPION 22

a

b

X

c

Y Z

a

b

X

Y Z c

a

b

X Y

Z

Insert ‘c’

Unbalanced!
Balanced!



Practice

CSE 373 SP 18 - KASEY CHAMPION 23

15

8 22

4 2410

3

19

6 2017

put(16);

16



Practice

CSE 373 SP 18 - KASEY CHAMPION 24

15

8

224

24

10

3

19

6 20

17

put(16);

16



So much can go wrong

CSE 373 SP 18 - KASEY CHAMPION 25

1

3

2

Unbalanced!
3

1

2

Rotate Left

Unbalanced!

Rotate Right

1

3

2

Unbalanced!



Two AVL Cases

CSE 373 SP 18 - KASEY CHAMPION 26

1

3

2

1

2

3

Line Case

Solve with 1 rotation

Kink Case

Solve with 2 rotations

3

2

1

Rotate Right

Parent’s left becomes child’s right

Child’s right becomes its parent

Rotate Left

Parent’s right becomes child’s left

Child’s left becomes its parent

3

1

2

Rotate subtree left

Rotate root tree 

right

Rotate subtree right

Rotate root tree left



Double Rotations 1

CSE 373 SP 18 - KASEY CHAMPION 27

a

e

W

d

Y

Z

a

e

X

X

Z

Insert ‘c’

Unbalanced!

d

X

Y

c

a

d

W

Y

ZX

e

c


