
Lecture 5: Master Theorem, 
Maps, and Iterators

Data Structures and 

Algorithms

CSE 373 SU 18 – BEN JONES 1



Warmup

Draw a tree for this recurrence, and write equations for the 
recursive and non-recursive work:

CSE 373 SP 18 – BEN JONES 2

𝑇 𝑛 = ቐ
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 otherwise



Warmup

CSE 373 SP 18 – BEN JONES 3

𝑇 𝑛 = ቐ
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 otherwise



Master Theorem

CSE 373 SU 18 - ROBBIE WEBER 4

𝑇 𝑛 = ቐ
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ some constant

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 otherwise

Given a recurrence of the following form:

The big-theta solution always follows this pattern:

𝑇 𝑛 is Θ 𝑛𝑐log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 is Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 is Θ 𝑛log𝑏 𝑎

If

If

If

then

then

then

Where a, b, c, and d are all constants.



Apply Master Theorem

CSE 373 SU 18 - ROBBIE WEBER 5

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 𝑛 =
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ some constant

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

log𝑏 𝑎 = 𝑐 𝑇 𝑛 is Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 is Θ 𝑛log𝑏 𝑎

If

If

𝑇 𝑛 is Θ 𝑛𝑐log𝑏 𝑎 < 𝑐If then

then

then

Given a recurrence of the form:

a = 2

b = 2

c = 1

d = 1
log𝑏 𝑎 = 𝑐 ⇒ log2 2 = 1

𝑇 𝑛 is Θ 𝑛𝑐 log2 𝑛 ⇒ Θ 𝑛1 log2 𝑛



Reflecting on Master Theorem

The case 
- Recursive case conquers work more quickly than it divides work

- Most work happens near “top” of tree

- Non recursive work in recursive case dominates growth, nc term

The case 
- Work is equally distributed across levels of the tree

- Overall work is approximately work at any level x height

The case 
- Recursive case divides work faster than it conquers work

- Most work happens near “bottom” of tree

- Work at base case dominates.

CSE 373 SU 18 - ROBBIE WEBER 6

log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐

log𝑏 𝑎 > 𝑐

𝑙𝑒𝑎𝑓𝑊𝑜𝑟𝑘 ≈ 𝑑 𝑛log𝑏 𝑎

ℎ𝑒𝑖𝑔ℎ𝑡 ≈ log𝑏 𝑎

𝑏𝑟𝑎𝑛𝑐ℎ𝑊𝑜𝑟𝑘 ≈ 𝑛𝑐log𝑏 𝑎

𝑇 𝑛 =
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ some constant

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

log𝑏 𝑎 = 𝑐 𝑇 𝑛 is Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 is Θ 𝑛log𝑏 𝑎

If

If

𝑇 𝑛 is Θ 𝑛𝑐log𝑏 𝑎 < 𝑐If then

then

then

Given a recurrence of the form:



Announcements

Pre-Course Survey Due Tonight!

HW1 Due Tonight!

Use cse373-staff@cs.washington.edu if you want to e-mail the staff – faster responses than 
just e-mailing Ben!

No class Wed. July 4.

Guest lecturer Robbie Webber on Friday, July 6 (I will be out of town Wed. – Sun. with 
limited internet, so use the staff list for questions)

CSE 373 SU 18 – BEN JONES 7

mailto:cse373-staff@cs.washington.edu


Your Machine Gitlab

CSE 373 SU 18 – BEN JONES 8

Git – How it Works

Current 

Code

“head”

Code History

.git folder

“head”

Code History

commit

push

pull



Git – Playing Nicely With Other

Git is designed to work on teams

Workflow: 

You: Commit -> Push -> 

Partner: Pull 

(Swap roles and repeat)

You should be pair programming, so you should not need to deal with merges

If you do run into an issue with merges, talk to a TA and we will teach you more about Git!

CSE 373 SU 18 – BEN JONES 9



Project Turn-In

HW 1 Due Tonight!

Tag with SUBMIT (in all caps)

If there is no SUBMIT tag, we’ll use whatever was in the master branch on Gitlab as your 
submission

How to use late days: tag it later. We will use the server’s timestamp of the SUBMIT tag to 
determine late days.

CSE 373 SU 18 – BEN JONES 10



Review: Maps (Dictionaries)

map: Holds a set of unique keys and a collection of values, where each key is associated 
with one value.
- a.k.a. "dictionary", "associative array", "hash"

operations:
- put(key, value ): Adds a 

mapping from a key to
a value.

- get(key ): Retrieves the
value mapped to the key.

- remove(key ): Removes
the given key and its
mapped value.

CSE 143 SP 17 – ZORA FUNG 11

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56



ArrayDictionary

CSE 373 SU 18 – BEN JONES 12



Doubly-Linked List (Deque)

CSE 373 SU 18 – BEN JONES 13



Doubly-Linked List (Deque)

CSE 373 SU 18 – BEN JONES 14



Traversing Data

Array

for (int i = 0; i < arr.length; i++) {

System.out.println(arr[i]);

}

List

for (int i = 0; i < myList.size(); i++) {

System.out.println(myList.get(i));

}

for (T item : list) {

System.out.println(item);

}

CSE 373 SP 18 - KASEY CHAMPION 15

Iterator!



Iterators

iterator: a Java interface that dictates how a collection of data should be traversed.

Behaviors:

hasNext() – returns true if the iteration has more elements

next() – returns the next element in the iteration

while (iterator.hasNext()) {

T item = iterator.next();

}

CSE 373 SP 18 - KASEY CHAMPION 16



Iterable

Iterable: a Java interface that lets a class be traversed using iterators (for each, etc).

Behaviors:

iterator() – returns an iterator to the class instance

CSE 373 SU 18 – BEN JONES 17



Implementing Iterable

Demo Implementation for CircularQueue

CSE 373 SU 18 – BEN JONES 18



Bonus Slides

CSE 373 SU 18 – BEN JONES 19

Amortized Analysis



Amortization

What’s the worst case for inserting into an ArrayList?

-O(n). If the array is full.

Is O(n) a good description of the worst case behavior? 

-If you’re worried about a single insertion, maybe.

-If you’re worried about doing, say, 𝑛 insertions in a row. NO!

Amortized bounds let us study the behavior of a bunch of consecutive 
calls.

CSE 373 SU 18 - ROBBIE WEBER 20



Amortization

The most common application of amortized bounds is for 
insertions/deletions and data structure resizing.

Let’s see why we always do that doubling strategy.

How long in total does it take to do 𝑛 insertions?

We might need to double a bunch, but the total resizing work is at most 
O(n)

And the regular insertions are at most 𝑛 ⋅ 𝑂 1 = 𝑂(𝑛)

So 𝑛 insertions take 𝑂(𝑛) work total

Or amortized 𝑂(1) time. 

CSE 373 SU 18 - ROBBIE WEBER 21



Amortization

Why do we double? Why not increase the size by 10,000 each time we 
fill up?

How much work is done on resizing to get the size up to 𝑛?

Will need to do work on order of current size every 10,000 inserts

σ
𝑖=0

𝑛

10000 10000𝑖 ≈ 10,000 ⋅
𝑛2

10,0002
= 𝑂(𝑛2)

The other inserts do 𝑂 𝑛 work total. 

The amortized cost to insert is 𝑂
𝑛2

𝑛
= 𝑂(𝑛).

Much worse than the 𝑂(1) from doubling!

CSE 373 SU 18 - ROBBIE WEBER 22


