

Lecture 3: Asymptotic Analysis + Recurrences

Data Structures and Algorithms

Warmup - Write a model and find Big-O

```
for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
        System.out.println("Hello!");
    }
}
Summation 
```

Definition: Summation
$\sum_{i=a}^{b} f(i)=f(a)+f(a+1)+f(a+2)+\ldots+f(b-2)+f(b-1)+f(b)$
$\mathrm{T}(\mathrm{n})=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c$

Simplifying Summations

Function Modeling: Recursion

```
public int factorial(int n) {
    if (n == 0 || n == 1) {
        return 1; +1
    } else {
        return n * factorial(n - 1); +????
}
```


Function Modeling: Recursion

```
public int factorial(int n) {
    if (n == 0 || n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1); +T(n-1)
}
T(n)={}{\begin{array}{ll}{\mp@subsup{C}{1}{}}&{\mathrm{ when }n=0\mathrm{ or 1}}\\{\mp@subsup{C}{2}{}+T(n-1)}&{\mathrm{ otherwise }}
```


Definition: Recurrence

Mathematical equation that recursively defines a sequence
The notation above is like an if / else statement

Unfolding Method

$$
\begin{aligned}
& T(n)= \begin{cases}C_{1} & \text { when } n=0 \text { or } 1 \\
C_{2}+T(n-1) & \text { otherwise }\end{cases} \\
& T(3)=C_{2}+T(3-1)=C_{2}+\left(C_{2}+T(2-1)\right)=C_{2}+\left(C_{2}+\left(C_{1}\right)\right) \quad=2 C_{2}+C_{1} \\
& T(n)=C_{1}+\sum_{i=0}^{n-1} C_{2} \\
& \text { Summation of a constant } \\
& T(n)=C_{1}+(n-1) C_{2}
\end{aligned}
$$

Announcements

- Course background survey due by Friday
- HW 1 is Due Friday
- HW 2 Assigned on Friday - Partner selection forms due by 11:59pm Thursday https://goo.gl/forms/rVrVUkFDdsqI8pkD2

A Detour on Style

- Checkstyle for project

- No packages for HW1

Braces for blocks
Good style is easy to read

- Javadoc on public methods (not needed if interface has Javadoc)

Comment non-obvious code
Self-Documenting code is better than commented code
Good variable and method names go a long way towards this
No magic numbers (numbers larger than 2 or 3 should probably be class constants unless there's a really good reason)
No code duplication

- Use Idioms!
ex. for (int $\mathrm{I}=0 ; \mathrm{I}<10 ; \mathrm{i}++$) instead of for (int $\mathrm{I}=0 ; \mathrm{I}==9 ; \mathrm{i}=\mathrm{i}+1$)
naming: CONSTANTS_USE_CAPS, ClassName, methodName

Tree Method

Idea:
-Since we're making recursive calls, let's just draw out a tree, with one node for each recursive call.
-Each of those nodes will do some work, and (if they make more recursive calls) have children.
-If we can just add up all the work, we can find a big- Θ bound.

Solving Recurrences I: Binary Search

$$
T(n)=\left\{\begin{array}{l}
1 \text { when } n \leq 1 \\
T\left(\frac{n}{2}\right)+1 \text { otherwise }
\end{array}\right.
$$

0. Draw the tree.
1. What is the input size at level i ?
2. What is the number of nodes at level i ?
3. What is the work done at recursive level i ?
4. What is the last level of the tree?
5. What is the work done at the base case?
6. Sum over all levels (using 3,5).
7. Simplify

Solving Recurrences I: Binary Search

$$
T(n)=\left\{\begin{array}{l}
1 \text { when } n \leq 1 \\
T\left(\frac{n}{2}\right)+1 \text { otherwise }
\end{array}\right.
$$

0. Draw the tree.
1. What is the input size at level i ?
2. What is the number of nodes at level i ?
3. What is the work done at recursive level i ?
4. What is the last level of the tree?
5. What is the work done at the base case?
6. Sum over all levels (using 3,5).
7. Simplify

Solving Recurrences I: Binary Search

0. Draw the tree.

1. What is the input size at level i ?
2. What is the number of nodes at level i ?
3. What is the work done at recursive level i ?

Level	Input Size	Work/call	Work/level
0	n	1	1
1	$n / 2$	1	1
2	$n / 2^{2}$	1	1
i	$n / 2^{i}$	1	1
$\log _{2} n$	1	1	1

$$
\sum_{i=0}^{\log _{2} n-1} 1+1=\log _{2} n
$$

Solving Recurrences II:

Tree Method Formulas

$$
T(n)=\left\{\begin{array}{l}
1 \text { when } n \leq 1 \\
2 T\left(\frac{n}{2}\right)+n \text { otherwise }
\end{array}\right.
$$

How much work is done by recursive levels (branch nodes)?

1. What is the input size at level i ?
$i=0$ is overall root level.
$\left(n / 2^{i}\right)$
2^{i}
$2^{i}\left(n / 2^{i}\right)=n$
$\sum_{i=0}^{\log _{2} n-1} 2^{i}\left(\frac{n}{2^{i}}\right)$

How much work is done by the base case level (leaf nodes)?
4. What is the last level of the tree? $\left(n / 2^{i}\right)=1 \rightarrow 2^{i}=n \rightarrow i=\log _{2} n$
5. What is the work done at the last level?

NonRecursive work $=$ WorkPerBaseCase \times numberCalls $\quad 1 \cdot 2^{\log _{2} n}=n$
6. Combine and Simplify

$$
T(n)=\sum_{i=0}^{\log _{2} n-1} 2^{i}\left(\frac{n}{2^{i}}\right)+n=n \log _{2} n+n
$$

Solving Recurrences III

$$
T(n)=\left\{\begin{array}{l}
5 \text { when } n \leq 4 \\
3 T\left(\frac{n}{4}\right)+c n^{2} \text { otherwise }
\end{array}\right.
$$

Answer the following questions:

1. What is input size on level i ?
2. Number of nodes at level i ?
3. Work done at recursive level i ?
4. Last level of tree?
5. Work done at base case?
6. What is sum over all levels?

Solving Recurrences III

$$
T(n)=\left\{\begin{array}{l}
5 \text { when } n \leq 4 \\
3 T\left(\frac{n}{4}\right)+c n^{2} \text { otherwise }
\end{array}\right.
$$

1. Input size on level i ? $\frac{n}{4^{i}}$
2. How many calls on level i ? 3^{i}
3. How much work on level i ? $\quad 3^{i} c\left(\frac{n}{4^{i}}\right)^{2}=\left(\frac{3}{16}\right)^{i} c n^{2}$
4. What is the last level? When $\frac{n}{4^{i}}=4 \rightarrow \log _{4} n-1$
5. A. How much work for each leaf node? 5
B. How many base case calls? $3^{\log _{4} n-1}=\frac{3^{\log _{4} n}}{3}$

$$
T(n)=\sum_{i=0}^{\log _{4} n-2}\left(\frac{3}{16}\right)^{i} c n^{2}+\left(\frac{5}{3}\right) n^{\log _{4} 3}
$$

Solving Recurrences III

7. Simplify...

$$
T(n)=\sum_{i=0}^{\log _{4} n-2}\left(\frac{3}{16}\right)^{i} c n^{2}+\left(\frac{5}{3}\right) n^{\log _{4} 3}
$$

factoring out a
constant

$$
\sum_{i=a}^{b} c f(i)=c \sum_{i=a}^{b} f(i)
$$

$$
T(n)=c n^{2} \sum_{i=0}^{\log _{4} n-2}\left(\frac{3}{16}\right)^{i}+\left(\frac{5}{3}\right) n^{\log _{4} 3}
$$

finite geometric series

$$
\sum_{i=0}^{n-1} x^{i}=\frac{x^{n}-1}{x-1}
$$

Closed form:

$$
T(n)=c n^{2}\left(\frac{{\frac{3}{\log _{4} n-1}}_{16}^{16}}{\frac{3}{16}-1}\right)+\left(\frac{5}{3}\right) n^{\log _{4} 3}
$$

$$
\begin{aligned}
& \text { infinite geometric } \\
& \text { series } \\
& \sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} \\
& T(n) \in O\left(n^{2}\right)
\end{aligned}
$$

$$
\text { when }-1<x<1
$$

Another Example

$$
T(n)=\left\{\begin{array}{cc}
1 & \text { if } n=1 \\
2 & \text { if } n=2 \\
T(n-2) & +4 \text { otherwise }
\end{array}\right.
$$

Is there an easier way?

We do all that effort to get an exact formula for the number of operations,
But we usually only care about the Θ bound.
There must be an easier way
Sometimes, there is!

Master Theorem

Given a recurrence of the following form:

$$
T(n)= \begin{cases}d & \text { when } n \leq \text { some constant } \\ & a T\left(\frac{n}{b}\right)+n^{c} \text { otherwise }\end{cases}
$$

Where a, b, c, and d are all constants.
The big-theta solution always follows this pattern:
If $\log _{b} a<c$ then $T(n)$ is $\Theta\left(n^{c}\right)$
If $\log _{b} a=c$ then $T(n)$ is $\Theta\left(n^{c} \log n\right)$
If $\log _{b} a>c$ then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

Apply Master Theorem

Given a recurrence of the form:
$T(n)=\left\{\begin{array}{l}d \text { when } n \leq \text { some constant } \\ a T\left(\frac{n}{b}\right)+n^{c} \text { otherwise } \\ \text { If } \log _{b} a<c \text { then } T(n) \text { is } \Theta\left(n^{c}\right) \\ \text { If } \log _{b} a=c \text { then } T(n) \text { is } \Theta\left(n^{c} \log n\right) \\ \text { If } \log _{b} a>c \text { then } T(n) \text { is } \Theta\left(n^{\log _{b} a}\right)\end{array}\right.$

$$
T(n)= \begin{cases}1 \text { when } n \leq 1 & a=2 \\ 2 T\left(\frac{n}{2}\right)+n \text { otherwise } & b=2 \\ c=1 \\ d=1\end{cases}
$$

$$
T(n) \text { is } \Theta\left(n^{c} \log _{2} n\right) \Rightarrow \Theta\left(n^{1} \log _{2} n\right)
$$

Reflecting on Master Theorem

Given a recurrence of the form:
$T(n)=\left\{\begin{array}{l}d \text { when } n \leq \text { some constant } \\ a T\left(\frac{n}{b}\right)+n^{c} \text { otherwise } \\ \text { If } \log _{b} a<c \text { then } T(n) \text { is } \Theta\left(n^{c}\right) \\ \text { If } \log _{b} a=c \text { then } T(n) \text { is } \Theta\left(n^{c} \log n\right) \\ \text { If } \log _{b} a>c \text { then } T(n) \text { is } \Theta\left(n^{\log _{b} a}\right)\end{array}\right.$

The $\log _{b} a<c$ case
Recursive case conquers work more quickly than it divides work Most work happens near "top" of tree
Non recursive work in recursive case dominates growth, n^{c} term

The $\log _{b} a=c$ case
Work is equally distributed across levels of the tree
Overall work is approximately work at any level x height

$$
\begin{aligned}
& \text { height } \approx \log _{b} a \\
& \text { branchWork } \approx n^{c} \log _{b} a \\
& \text { leafWork } \approx d\left(n^{\log _{b} a}\right)
\end{aligned}
$$

The $\log _{b} a>c$ case

- Recursive case divides work faster than it conquers work
- Most work happens near "bottom" of tree
- Work at base case dominates.

Benefits of Solving By Hand

If we had the Master Theorem why did we do all that math???
Not all recurrences fit the Master Theorem.
-Recurrences show up everywhere in computer science.
-And they're not always nice and neat.
It helps to understand exactly where you're spending time.
-Master Theorem gives you a very rough estimate. The Tree Method can give you a much more precise understanding.

Amortization

What's the worst case for inserting into an ArrayList?
$-\mathrm{O}(\mathrm{n})$. If the array is full.
Is $O(n)$ a good description of the worst case behavior?
-If you're worried about a single insertion, maybe.
-If you're worried about doing, say, n insertions in a row. NO!
Amortized bounds let us study the behavior of a bunch of consecutive calls.

Amortization

The most common application of amortized bounds is for insertions/deletions and data structure resizing.
Let's see why we always do that doubling strategy. How long in total does it take to do n insertions?
We might need to double a bunch, but the total resizing work is at most $\mathrm{O}(\mathrm{n})$
And the regular insertions are at most $n \cdot O(1)=O(n)$
So n insertions take $O(n)$ work total
Or amortized $O(1)$ time.

Amortization

Why do we double? Why not increase the size by 10,000 each time we fill up?
How much work is done on resizing to get the size up to n ?
Will need to do work on order of current size every 10,000 inserts
$\sum_{i=0}^{\frac{n}{10000}} 10000 i \approx 10,000 \cdot \frac{n^{2}}{10,000^{2}}=O\left(n^{2}\right)$
The other inserts do $O(n)$ work total.
The amortized cost to insert is $O\left(\frac{n^{2}}{n}\right)=O(n)$.
Much worse than the $O(1)$ from doubling!

