
Lecture 3: Asymptotic
Analysis + Recurrences

Data Structures and

Algorithms

CSE 373 SU 18 – BEN JONES 1

Warmup – Write a model and find Big-O

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);

}

}

CSE 373 SP 18 - KASEY CHAMPION 2

Summation

1 + 2 + 3 + 4 +… + n =
෍

𝑖=1

𝑛

𝑖

= f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

෍

𝑖=𝑎

𝑏

𝑓(𝑖)

T(n) = ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑖−1

𝑐

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);

}

}

Simplifying Summations

CSE 373 WI 18 – MICHAEL LEE 3

T(n) = ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑖−1

𝑐 = ෍

𝑖=0

𝑛−1

𝑐𝑖 Summation of a constant

= 𝑐෍

𝑖=0

𝑛−1

𝑖 Factoring out a constant

=
𝑐
𝑛 𝑛 − 1

2 Gauss’s Identity

=
𝑐

2
𝑛2 −

𝑐

2
𝑛 O(n2)

Function Modeling: Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return n * factorial(n – 1);

}

CSE 373 SP 18 - KASEY CHAMPION 4

+1

+3
+c

+????

Function Modeling: Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return n * factorial(n – 1);

}

CSE 373 SP 18 - KASEY CHAMPION 5

+c1

+T(n-1)

+c2

C1

C2 + T(n-1)
T(n) =

when n = 0 or 1

otherwise

Mathematical equation that recursively defines a sequence

The notation above is like an if / else statement

Definition: Recurrence

Unfolding Method

T(3) =

T(n) = C1 +

Summation of a constant

T(n) = C1 + (n-1)C2

CSE 373 SP 18 - KASEY CHAMPION 6

T(n) =
when n = 0 or 1

otherwise

C1

C2 + T(n-1)

෍

𝑖=0

𝑛−1

𝐶2

C2 + T(3 – 1) = C2 + (C2 + T(2 – 1)) = C2 + (C2 + (C1)) = 2C2 + C1

Announcements

- Course background survey due by Friday

- HW 1 is Due Friday

- HW 2 Assigned on Friday – Partner selection forms due by 11:59pm Thursday

https://goo.gl/forms/rVrVUkFDdsqI8pkD2

CSE 373 SU 18 – BEN JONES 7

https://goo.gl/forms/rVrVUkFDdsqI8pkD2

A Detour on Style

- Checkstyle for project
- No packages for HW1

- Braces for blocks

- Good style is easy to read

- Javadoc on public methods (not needed if interface has Javadoc)

- Comment non-obvious code

- Self-Documenting code is better than commented code

- Good variable and method names go a long way towards this

- No magic numbers (numbers larger than 2 or 3 should probably be class constants unless there’s a really good reason)

- No code duplication

- Use Idioms!

ex. for (int I = 0; I < 10; i++) instead of for (int I = 0; I == 9; i = i + 1)

naming: CONSTANTS_USE_CAPS, ClassName, methodName

CSE 373 SU 18 – BEN JONES 8

Tree Method

Idea:

-Since we’re making recursive calls, let’s just draw out a tree, with one
node for each recursive call.

-Each of those nodes will do some work, and (if they make more
recursive calls) have children.

-If we can just add up all the work, we can find a big-Θ bound.

CSE 373 SU 18 - ROBBIE WEBER 9

Solving Recurrences I: Binary Search

CSE 373 SU 18 - ROBBIE WEBER 10

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0. Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify

Solving Recurrences I: Binary Search

CSE 373 SU 18 - ROBBIE WEBER 11

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0. Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify

…

1

1

1

1

Solving Recurrences I: Binary Search

CSE 373 SU 18 - ROBBIE WEBER 12

𝑇 𝑛 =

1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Level Input Size Work/call Work/level

0 𝑛 1 1

1 𝑛/2 1 1

2 𝑛/22 1 1

𝑖 𝑛/2𝑖 1 1

log2𝑛 1 1 1

σ
𝑖=0
log2 𝑛−1 1 + 1 = log2 𝑛

0. Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify

Solving Recurrences II:

13

n

n

2

n

2

n

4

n

4

n

4

n

4

n

8

n

8

n

8

n

8

n

8

n

8

n

8

n

8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

… … … … … … … …… … …… … … … …

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

CSE 373 SU 18 - ROBBIE WEBER

Tree Method Formulas

How much work is done by recursive levels (branch nodes)?
1. What is the input size at level 𝑖?

- 𝑖= 0 is overall root level.

2. At each level 𝑖, how many calls are there?

3. At each level 𝑖, how much work is done??

How much work is done by the base case level (leaf nodes)?
4. What is the last level of the tree?

5. What is the work done at the last level?

6. Combine and Simplify

CSE 373 SU 18 - ROBBIE WEBER 14

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = ෍

𝑖=0

𝑙𝑎𝑠𝑡𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝐿𝑒𝑣𝑒𝑙

𝑏𝑟𝑎𝑛𝑐ℎ𝑁𝑢𝑚 𝑖 𝑏𝑟𝑎𝑛𝑐ℎ𝑊𝑜𝑟𝑘(𝑖)

𝑁𝑜𝑛𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑙𝑙𝑠

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2𝑖

(𝑛/2𝑖)

෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖

1 ⋅ 2log2 𝑛 = 𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖
+ 𝑛 = 𝑛 log2 𝑛 + 𝑛

2𝑖(𝑛/2𝑖) = 𝑛

(𝑛/2𝑖) = 1→ 2𝑖 = 𝑛 → 𝑖 = log2 𝑛

Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 15

𝑐n2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

… …… … …… … …… … …… … …… … …… … …… … …… … ……

4 4

Answer the following

questions:

1. What is input size on

level 𝑖?
2. Number of nodes at

level 𝑖?
3. Work done at

recursive level 𝑖?
4. Last level of tree?

5. Work done at base

case?

6. What is sum over all

levels?

𝑇 𝑛 =
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐
n

4

2

𝑐
n

4

2

𝑐
n

4

2
c
𝑛

4

2

c
𝑛

4

2

𝑐
𝑛

4

2

𝑐𝑛2

Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 16

Level (i)
Number of

Nodes

Work per

Node

Work per

Level

0 1 𝑐𝑛2 𝑐𝑛2

1 3 𝑐
𝑛

4

2 3

16
𝑐𝑛2

2 32 𝑐
𝑛

42

2 3

16

2

𝑐𝑛2

𝑖 3𝑖 𝑐
𝑛

4𝑖

2 3

16

𝑖

𝑐𝑛2

Base =

log4𝑛 − 1
3log4 𝑛−1 5

5

3
𝑛log4 3

1. Input size on level 𝑖?

2. How many calls on level 𝑖?

3. How much work on level 𝑖?

4. What is the last level?

5. A. How much work for each leaf node?

B. How many base case calls?

𝑛

4𝑖

𝑐
𝑛

4𝑖

2

When
𝑛

4𝑖
= 4→ log4 𝑛 − 1

5

𝑇 𝑛 =
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

6. Combining it all together…

3𝑖𝑐
𝑛

4𝑖

2

=
3

16

𝑖

𝑐𝑛2

𝑇 𝑛 = ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

𝑐𝑛2 +
5

3
𝑛log43

3log4 𝑛−1 =
3log4 𝑛

3 power of a log

𝑥log𝑏 𝑦 = 𝑦log𝑏 𝑥

=
𝑛log4 3

3

3𝑖

Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 17

𝑇 𝑛 = ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

𝑐𝑛2 +
5

3
𝑛log43

𝑇 𝑛 ≤ 𝑐𝑛2
1

1 −
3
16

+
5

3
𝑛log43

𝑇 𝑛 = 𝑐𝑛2
3
16

log4 𝑛−1

− 1

3
16 − 1

+
5

3
𝑛log43

𝑇 𝑛 ∈ 𝑂(𝑛2)

෍

𝑖=𝑎

𝑏

𝑐𝑓(𝑖) = 𝑐෍

𝑖=𝑎

𝑏

𝑓(𝑖)

factoring out a

constant
𝑇 𝑛 = 𝑐𝑛2 ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

+
5

3
𝑛log43

෍

𝑖=0

𝑛−1

𝑥𝑖 =
𝑥𝑛 − 1

𝑥 − 1

finite geometric series

෍

𝑖=0

∞

𝑥𝑖 =
1

1 − 𝑥

infinite geometric

series

when -1 < x < 1

If we’re trying to prove upper bound…

𝑇 𝑛 ≤ 𝑐𝑛2෍

𝑖=0

∞
3

16

𝑖

+
5

3
𝑛log43

Closed form:

7. Simplify…

Another Example

𝑇 𝑛 = ቐ
1 if 𝑛 = 1
2 if 𝑛 = 2

𝑇 𝑛 − 2 + 4 otherwise

CSE 373 SU 18 - ROBBIE WEBER 18

Is there an easier way?

We do all that effort to get an exact formula for the number of
operations,

But we usually only care about the Θ bound.

There must be an easier way

Sometimes, there is!

CSE 373 SU 18 - ROBBIE WEBER 19

Master Theorem

CSE 373 SU 18 - ROBBIE WEBER 20

𝑇 𝑛 = ቐ
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ some constant

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 otherwise

Given a recurrence of the following form:

The big-theta solution always follows this pattern:

𝑇 𝑛 is Θ 𝑛𝑐log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 is Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 is Θ 𝑛log𝑏 𝑎

If

If

If

then

then

then

Where a, b, c, and d are all constants.

Apply Master Theorem

CSE 373 SU 18 - ROBBIE WEBER 21

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 𝑛 =
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ some constant

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

log𝑏 𝑎 = 𝑐 𝑇 𝑛 is Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 is Θ 𝑛log𝑏 𝑎

If

If

𝑇 𝑛 is Θ 𝑛𝑐log𝑏 𝑎 < 𝑐If then

then

then

Given a recurrence of the form:

a = 2

b = 2

c = 1

d = 1
log𝑏 𝑎 = 𝑐 ⇒ log2 2 = 1

𝑇 𝑛 is Θ 𝑛𝑐 log2 𝑛 ⇒ Θ 𝑛1 log2 𝑛

Reflecting on Master Theorem

The case
- Recursive case conquers work more quickly than it divides work

- Most work happens near “top” of tree

- Non recursive work in recursive case dominates growth, nc term

The case
- Work is equally distributed across levels of the tree

- Overall work is approximately work at any level x height

The case
- Recursive case divides work faster than it conquers work

- Most work happens near “bottom” of tree

- Work at base case dominates.

CSE 373 SU 18 - ROBBIE WEBER 22

log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐

log𝑏 𝑎 > 𝑐

𝑙𝑒𝑎𝑓𝑊𝑜𝑟𝑘 ≈ 𝑑 𝑛log𝑏 𝑎

ℎ𝑒𝑖𝑔ℎ𝑡 ≈ log𝑏 𝑎

𝑏𝑟𝑎𝑛𝑐ℎ𝑊𝑜𝑟𝑘 ≈ 𝑛𝑐log𝑏 𝑎

𝑇 𝑛 =
𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ some constant

𝑎𝑇
𝑛

𝑏
+ 𝑛𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

log𝑏 𝑎 = 𝑐 𝑇 𝑛 is Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 is Θ 𝑛log𝑏 𝑎

If

If

𝑇 𝑛 is Θ 𝑛𝑐log𝑏 𝑎 < 𝑐If then

then

then

Given a recurrence of the form:

Benefits of Solving By Hand

If we had the Master Theorem why did we do all that math???

Not all recurrences fit the Master Theorem.

-Recurrences show up everywhere in computer science.

-And they’re not always nice and neat.

It helps to understand exactly where you’re spending time.

-Master Theorem gives you a very rough estimate. The Tree Method
can give you a much more precise understanding.

CSE 373 SU 18 - ROBBIE WEBER 23

Amortization

What’s the worst case for inserting into an ArrayList?

-O(n). If the array is full.

Is O(n) a good description of the worst case behavior?

-If you’re worried about a single insertion, maybe.

-If you’re worried about doing, say, 𝑛 insertions in a row. NO!

Amortized bounds let us study the behavior of a bunch of consecutive
calls.

CSE 373 SU 18 - ROBBIE WEBER 24

Amortization

The most common application of amortized bounds is for
insertions/deletions and data structure resizing.

Let’s see why we always do that doubling strategy.

How long in total does it take to do 𝑛 insertions?

We might need to double a bunch, but the total resizing work is at most
O(n)

And the regular insertions are at most 𝑛 ⋅ 𝑂 1 = 𝑂(𝑛)

So 𝑛 insertions take 𝑂(𝑛) work total

Or amortized 𝑂(1) time.

CSE 373 SU 18 - ROBBIE WEBER 25

Amortization

Why do we double? Why not increase the size by 10,000 each time we
fill up?

How much work is done on resizing to get the size up to 𝑛?

Will need to do work on order of current size every 10,000 inserts

σ
𝑖=0

𝑛

10000 10000𝑖 ≈ 10,000 ⋅
𝑛2

10,0002
= 𝑂(𝑛2)

The other inserts do 𝑂 𝑛 work total.

The amortized cost to insert is 𝑂
𝑛2

𝑛
= 𝑂(𝑛).

Much worse than the 𝑂(1) from doubling!

CSE 373 SU 18 - ROBBIE WEBER 26

