

Lecture 3: How to measure efficiency
 Data Structures and Algorithms

Announcements

- Course background survey due by Friday
- HW 1 is Due Friday
- Alex has Office Hours after class (2:30-4:30) CSE 006, will help with setup
- If you have any questions about your setup please come to office hours so we can iron out all the wrinkles before the partnered projects begin next week.
- HW 2 Assigned on Friday - Partner selection forms due by 11:59pm Thursday https://goo.gl/forms/rVrVUkFDdsqI8pkD2

Review: Sequential Search

sequential search: Locates a target value in an array / list by examining each element from start to finish.

- How many elements will it need to examine?

Example: Searching the array below for the value 42:

What is the best case?

- What is the worst case?

What is the complexity class? $O(n)$

Review: Binary Search

binary search: Locates a target value in a sorted array or list by successively eliminating half of the array from consideration.

How many elements will it need to examine?
Example: Searching the array below for the value 42:

What is the best case? $O(1)$ - the middle
-What is the worst case? The beginning
What is the complexity class? $\log (n)$

Analyzing Binary Search

What is the pattern?

- At each iteration, we eliminate half of the remaining elements

How long does it take to finish?

- $1^{\text {st }}$ iteration - N/2 elements remain
$2^{\text {nd }}$ iteration $-N / 4$ elements remain
Kth iteration - $\mathrm{N} / 2^{\wedge} \mathrm{k}$ elements remain
- Done when $N / 2^{\wedge} k=1$

Analyzing Binary Search

$$
\begin{array}{l|l}
\frac{N}{2^{k}=1} \\
N=2^{k} & \begin{array}{l}
\log ^{2} \text { isthmus } \\
\log _{b} a=x \quad \text { mean } \\
\log _{2} N=\log _{2} 2^{k}
\end{array} \\
x \text { solves } \\
\log _{2} N=k & b^{?}=a \\
\log _{b} b^{z}=x \\
\text { o(log} n) & b^{?}=b^{z} \rightarrow z
\end{array}
$$

Analyzing Binary Search

Finishes when $N / 2^{k}=1$
$N / 2^{K}=1$
-> multiply right side by 2^{K}
$N=2^{k}$
-> isolate K exponent with logarithm
$\log _{2} \mathrm{~N}=\mathrm{k}$

Is this exact?
N can be things other than powers of 2

- If N is odd we can't technically use $\log _{2}$

When we have an odd number of elements we select the larger half
Within a fair rounding error

Asymptotic Analysis

asymptotic analysis: how the runtime of an algorithm grows as the data set grows

Approximations / Rules

Basic operations take "constant" time
Assigning a variable
Accessing a field or array index
Consecutive statements
Sum of time for each statement
Function calls

- Time of function's body

Conditionals
Time of condition + maximum time of branch code Loops

Number of iterations x time for loop body

.

Modeling Case Study

Goal: return 'true' if a sorted array of ints contains duplicates

Solution 1: compare each pair of elements
public boolean hasDuplicatel (int[] array) \{
for (int $i=0 ; i<a r r a y . l e n g t h ; i++$) \{ for (int $j=0 ; j<a r r a y . l e n g t h ; j++$) \{
if (i ! = j \&\& array[i] == array[j]) \{ return true;

```
            }
```

 \(\}\)
 \}
 return false;
 \}

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) \{
for (int $i=0 ; i<a r r a y . l e n g t h-1 ; i++)$ \{ if (array[i] == array[i + 1]) \{
return true;
$\}$
\}
return false;
\}

Modeling Case Study: Solution 2

$T(n)$ where $n=$ array.length
-> work inside out
Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array)
 if (array[i] \Leftrightarrow array $[i+1])\{+4]$
 \}
\}

```
    return false; +1
```

\}
$T(n)=5(n-1)+1$
linear time complexity class $O(n)$

Modeling Case Study: Solution 1

Solution 1: compare each consecutive pair of elements

$T(n)=6 n^{2}+1$
quadratic time complexity class $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Comparing Functions

Function growth

n and 4 n look very different up close

n and 4 n look the same over time n^{2} eventually dominates n

n^{2} doesn't start off dominating the linear functions It eventually takes over...

Function comparison: exercise

$$
O(n)=O(5 n+3) \quad O(n) \leq O(5 n+3)
$$

$f(n)=n \leq g(n)=5 n+3$? True - all linear functions are treated as equivalent
$f(n)=5 n+3 \leq g(n)=n$? True
$f(n)=5 n+3 \leq g(n)=1$? False

$f(n)=5 n+3 \leq g(n)=n^{2}$? True - quadratic will always dominate linear
$f(n)=n^{2}+3 n+2 \leq g(n)=n^{3}$? True
$f(n)=n^{3} \leq g(n)=n^{2}+3 n+2$? False

Definition: function domination

Definition: Domination
A function $f(n)$ is dominated by $g(n)$ when...
There exists two constants $c>0$ and $n_{0}>0$
Such that for all values of $n \geq n_{0}$
$f(n) \leq c * g(n)$

Example:
Is $f(n)=n$ dominated by $g(n)=5 n+3$?
$c=1$
$\mathrm{n}_{0}=1$
$2 n=n+3$
Yes!

$$
\begin{array}{ll}
f(n)=n & n_{0} 1 \\
0(n)=1 \\
& c=1 \\
& c \cdot g(n)=n+3 \geq n \quad \forall n>n_{0}=1 \\
& \text { c. } f(n)=2 n \geq n+3 \quad \forall n>10
\end{array}
$$

Exercise: Function Domination

Demonstrate that $5 n^{2}+3 n+6$ is dominated by n^{3} by finding a c and n_{0} that satisfy the definition of domination

$$
\begin{aligned}
& n=1 \text { LbS } 5+3+6=14 \\
& 5+3+6=14 \\
& 5 n^{2}+3 n^{2}+6 n^{2}=14 n^{2} \\
& 5 n^{2}+3 n+6 \leq 14 n^{2} \text { for } n \geq 1 \\
& \frac{14 n^{2}}{14^{3}} \leq \frac{c^{*} n^{3}}{n^{3}} \text { for } c=? n>=\text { ? } \\
& \frac{14}{n}->c=14 \& n>=1
\end{aligned}
$$

Definition: Big O

If $f(n)=n \leq g(n)=5 n+3 \leq h(n)=100 n$ and
$h(n)=100 n \leq g(n)=5 n+3 \leq f(n) n$
Really they are all the "same"

Definition: Bic o
$O(f(n))$ is the "family" or "set" of all functions that are dominated by $f(n)$

Question: are $O(n), O(5 n+3)$ and $O(100 n)$ all the same?
True! By convention we pick simplest of the above -> O(n) ie "linear"

$$
f(n)=1 \text { in } O(n) ?
$$

Definitions: Big Ω

" $\mathrm{f}(\mathrm{n})$ is greater than or equal to $\mathrm{g}(\mathrm{n})$ "
$F(n)$ dominates $g(n)$ when:
There exists two constants such that $\mathrm{c}>0$ and $\mathrm{n} 0>0$
Such that for all values $n>=n 0$

$F(n)>=c * g(n)$ is true

Definition: Big Ω

$\Omega(f(n))$ is the family of all functions that dominates $f(n)$

$$
\begin{aligned}
& n^{2} \\
& \Omega\left(n^{2}\right) \\
& \rightarrow n^{3} \\
&= n^{5} \\
& \rightarrow n!
\end{aligned}
$$

E Element Of
$f(n)$ is dominated by $g(n)$
Is that the same as
" $\mathrm{f}(\mathrm{n})$ is contained inside $\mathrm{O}(\mathrm{g}(\mathrm{n}))^{\prime \prime}$
Yes!
$f(n) \in g(n)$

$$
n=O(n)
$$

$$
n \leq O(n)
$$

Examples

$4 n^{2} \in \Omega(1)$	$4 n^{2} \in O(1)$
true	false
$4 n^{2} \in \Omega(n)$	$4 n^{2} \in O(n)$
true	false
$4 n^{2} \in \Omega\left(n^{2}\right)$	$4 n^{2} \in O\left(n^{2}\right)$
true	true
$4 n^{2} \in \Omega\left(n^{3}\right)$	$4 n^{2} \in O\left(n^{3}\right)$
false	true
$4 n^{2} \in \Omega\left(n^{4}\right)$	$4 n^{2} \in O\left(n^{4}\right)$
false	true

$\mathbf{O}(\mathbf{f}(\mathrm{n}))$ is the "family" or "set" of all functions that are dominated by $f(n)$

Definition: Big Ω

$\Omega(f(n))$ is the family of all functions that dominates $f(n)$

Definitions: Big Θ

We say $f(n) \in \Theta(g(n))$ when both
$f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ are true

Which is only when $f(n)=g(n)$
Definition: Big 0
$\Theta(f(n))$ is the family of functions that are equivalent to $f(n)$

Industry uses "Big Θ " and "Big O" interchangeably

Summary

$O(f(n)) \leq f(n)==\Theta(f(n)) \leq \Omega(f(n))$
$\mathrm{f}(\mathrm{n})$
$\mathrm{O}(1)$
O(log n)
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$

Justifying the "Rules"

Approximations / Rules

Basic operations take "constant" time

- Assigning a variable
- Accessing a field or array index

Consecutive statements
Sum of time for each statement
Function calls

- Time of function's body

Conditionals
Time of condition + maximum time of branch code
Loops

- Number of iterations x time for loop body

$$
\left\{\begin{array}{ll}
= & c_{1} \\
= & c_{2} \\
\vdots & c_{3} \\
c_{n}
\end{array} \quad \begin{array}{ll}
c_{1}+c_{2}+\cdots+c_{n} \leq c_{n} \cdot n \\
+1 \text { perin } & c+1 \leq c^{\prime}
\end{array}\right.
$$

A Slightly Harder example

Remember: work outside in
Solution: $T(n)=n\left(n^{2}+10\right)=n^{3}+10 n$

Modeling Complex Loops

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("Hello!"); +1
    }
}
```

Keep an eye on loop bounds!

Modeling Complex Loops

Definition: Summation
$\sum_{i=a}^{b} f(i)=f(a)+f(a+1)+f(a+2)+\ldots+f(b-2)+f(b-1)+f(b)$
$\mathrm{T}(\mathrm{n})=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c$

Simplifying Summations

```
for (int i = 0; i<n; i++) {
```

$\mathrm{T}(\mathrm{n})=\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c=\sum_{i=0}^{n-1} c i$
Summation of a constant
$=c \sum_{i=0}^{n-1} i$
Factoring out a constant
$=c \frac{n(n-1)}{2} \quad$ Gauss's Identity
$=\frac{c}{2} n^{2}-\frac{c}{2} n \quad \mathrm{O}\left(\mathrm{n}^{2}\right)$

Function Modeling: Recursion

```
public int factorial(int n) {
    if (n == 0 || n == 1) {
        return 1; +1
    } else {
        return n * factorial(n - 1); +????
}
```


Function Modeling: Recursion

```
public int factorial(int n) {
    if (n == 0 || n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1); +T(n-1)
}
T(n)={}{\begin{array}{ll}{\mp@subsup{C}{1}{}}&{\mathrm{ when }n=0\mathrm{ or 1}}\\{\mp@subsup{C}{2}{}+T(n-1)}&{\mathrm{ otherwise }}
```


Definition: Recurrence

Mathematical equivalent of an if/else statement $\mathrm{f}(\mathrm{n})=$

Unfolding Method

$$
\left.\begin{array}{l}
T(n)= \begin{cases}C_{1} & \text { when } n=0 \text { or } 1 \\
C_{2}+T(n-1) & \text { otherwise }\end{cases} \\
T(3)=C_{2}+T(3-1)=C_{2}+\left(C_{2}+T(2-1)\right)=C_{2}+\left(C_{2}+\left(C_{1}\right)\right) \quad=2 C_{2}+C_{1}
\end{array}\right\} \begin{aligned}
& T(n)=C_{1}+\sum_{i=0}^{n-1} C_{2} \\
& \text { Summation of a constant } \\
& T(n)=C_{1}+(n-1) C_{2}
\end{aligned}
$$

