
Lecture 3: How to
measure efficiency

Data Structures and

Algorithms

CSE 373 SU 18 – BEN JONES 1

Announcements

- Course background survey due by Friday

- HW 1 is Due Friday

- Alex has Office Hours after class (2:30-4:30) CSE 006, will help with setup
- If you have any questions about your setup please come to office hours so we can iron out all the wrinkles
before the partnered projects begin next week.

- HW 2 Assigned on Friday – Partner selection forms due by 11:59pm Thursday

https://goo.gl/forms/rVrVUkFDdsqI8pkD2

CSE 373 SU 18 – BEN JONES 2

https://goo.gl/forms/rVrVUkFDdsqI8pkD2

Review: Sequential Search

CSE 143 SP 17 – ZORA FUNG 3

sequential search: Locates a target value in an array / list by examining each element from
start to finish.
- How many elements will it need to examine?

- Example: Searching the array below for the value 42:

- What is the best case?

- What is the worst case?

- What is the complexity class?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

Review: Binary Search

CSE 143 SP 17 – ZORA FUNG 4

binary search: Locates a target value in a sorted array or list by successively eliminating half
of the array from consideration.

- How many elements will it need to examine?

- Example: Searching the array below for the value 42:

- What is the best case?

- What is the worst case?

- What is the complexity class?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

Analyzing Binary Search

What is the pattern?
- At each iteration, we eliminate half of the remaining elements

How long does it take to finish?
- 1st iteration – N/2 elements remain

- 2nd iteration – N/4 elements remain

- Kth iteration - N/2^k elements remain

- Done when N/2^k = 1

CSE 373 SP 18 - KASEY CHAMPION 5

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Analyzing Binary Search

CSE 373 SU 18 – BEN JONES 6

Analyzing Binary Search

Finishes when N / 2K = 1

N / 2K = 1

-> multiply right side by 2K

N = 2K

-> isolate K exponent with logarithm

Log2N = k

Is this exact?
- N can be things other than powers of 2

- If N is odd we can’t technically use Log2

- When we have an odd number of elements we select the larger half

- Within a fair rounding error

CSE 373 SP 18 - KASEY CHAMPION 7

Asymptotic Analysis

asymptotic analysis: how the runtime of an algorithm grows as the data set grows

Approximations / Rules

- Basic operations take “constant” time

- Assigning a variable

- Accessing a field or array index

- Consecutive statements

- Sum of time for each statement

- Function calls

- Time of function’s body

- Conditionals

- Time of condition + maximum time of branch code

- Loops

- Number of iterations x time for loop body

CSE 373 SP 18 - KASEY CHAMPION 8

Modeling Case Study

Goal: return ‘true’ if a sorted array of ints contains duplicates

Solution 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {

return true;

}

}

}

return false;

}

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {

if (array[i] == array[i + 1]) {

return true;

}

}

return false;

}

CSE 373 WI 18 – MICHAEL LEE 9

Modeling Case Study: Solution 2

T(n) where n = array.length

-> work inside out

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {
if (array[i] == array[i + 1]) {

return true;
}

}
return false;

}

T(n) = 5 (n-1) + 1

linear time complexity class O(n)

CSE 373 WI 18 – MICHAEL LEE 10

+1

+1

+4
x n - 1If statement = 5

Modeling Case Study: Solution 1

Solution 1: compare each consecutive pair of elements

public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {

return true;

}

}

}

return false;

}

T(n) = 6 n2 + 1

quadratic time complexity class O(n2)

CSE 373 WI 18 – MICHAEL LEE 11

+1

+1

+5
x n

6

x n

6n
6n2

Comparing Functions

CSE 373 SP 18 - KASEY CHAMPION 12

Function growth

CSE 373 SP 18 - KASEY CHAMPION 13

n n

n and 4n look the same over time

n2 eventually dominates n

n and 4n look very different up close
n2 doesn’t start off dominating the

linear functions

It eventually takes over…

Function comparison: exercise

f(n) = n ≤ g(n) = 5n + 3?

f(n) = 5n + 3 ≤ g(n) = n?

f(n) = 5n + 3 ≤ g(n) = 1?

f(n) = 5n + 3 ≤ g(n) = n2?

f(n) = n2 + 3n + 2 ≤ g(n) = n3?

f(n) = n3 ≤ g(n) = n2 + 3n + 2 ?

CSE 373 WI 18 – MICHAEL LEE 14

True – all linear functions are treated as equivalent

True

False

True – quadratic will always dominate linear

True

False

Definition: function domination

A function f(n) is dominated by g(n) when…

There exists two constants c > 0 and n0 > 0

Such that for all values of n ≥ n0

f(n) ≤ c * g(n)

Example:

Is f(n) = n dominated by g(n) = 5n + 3 ?

c = 1

n0 = 1

Yes!

CSE 373 SP 18 - KASEY CHAMPION 15

Definition: Domination

Exercise: Function Domination

Demonstrate that 5n2 + 3n + 6 is dominated by n3 by finding a c and n0 that satisfy the
definition of domination

5n2 + 3n + 6 ≤ 5n2 + 3n2 + 6n2 when n ≥ 1

5n2 + 3n2 + 6n2 = 14n2

5n2 + 3n + 6 ≤ 14n2 for n ≥ 1

14n2 ≤ c*n3 for c = ? n >= ?

14

𝑛
-> c = 14 & n >= 1

CSE 373 SP 18 - KASEY CHAMPION 16

Definition: Big O

If f(n) = n ≤ g(n) = 5n + 3 ≤ h(n) = 100n and

h(n) = 100n ≤ g(n) = 5n + 3 ≤ f(n) n

Really they are all the “same”

O(f(n)) is the “family” or “set” of all functions that are dominated by f(n)

Question: are O(n), O(5n + 3) and O(100n) all the same?

True! By convention we pick simplest of the above -> O(n) ie “linear”

CSE 373 SP 18 - KASEY CHAMPION 17

Definition: Big O

Definitions: Big Ω

“f(n) is greater than or equal to g(n)”

F(n) dominates g(n) when:

There exists two constants such that c > 0 and n0 > 0

Such that for all values n >= n0

F(n) >= c * g(n) is true

Ω(f(n)) is the family of all functions that dominates f(n)

CSE 373 SP 18 - KASEY CHAMPION 18

Definition: Big Ω

∈ Element Of

f(n) is dominated by g(n)

Is that the same as

“f(n) is contained inside O(g(n))”

Yes!

f(n) ∈ g(n)

CSE 373 SP 18 - KASEY CHAMPION 19

Examples

4n2 ∈ Ω(1)

true

4n2 ∈ Ω(n)

true

4n2 ∈ Ω(n2)

true

4n2 ∈ Ω(n3)

false

4n2 ∈ Ω(n4)

false

CSE 373 SP 18 - KASEY CHAMPION 20

4n2 ∈ O(1)

false

4n2 ∈ O(n)

false

4n2 ∈ O(n2)

true

4n2 ∈ O(n3)

true

4n2 ∈ O(n4)

true

O(f(n)) is the “family” or “set” of all

functions that are dominated by f(n)

Ω(f(n)) is the family of all

functions that dominates f(n)

Definition: Big O

Definition: Big Ω

Definitions: Big Θ

We say f(n) ∈ Θ(g(n)) when both

f(n) ∈ O(g(n)) and f(n) ∈ Ω (g(n)) are true

Which is only when f(n) = g(n)

Θ(f(n)) is the family of functions that are equivalent to f(n)

Industry uses “Big Θ” and “Big O” interchangeably

CSE 373 SP 18 - KASEY CHAMPION 21

Definition: Big Θ

Summary

O(f(n)) ≤ f(n) == Θ(f(n)) ≤ Ω(f(n))

f(n)

O(1)

O(log n)

O(n)

O(n2)

O(n3)

CSE 373 SP 18 - KASEY CHAMPION 22

Dominated by

f(n) ∈ O(g(n))

Dominates

f(n) ∈ Ω(g(n))

Justifying the “Rules”

Approximations / Rules

- Basic operations take “constant” time

- Assigning a variable

- Accessing a field or array index

- Consecutive statements

- Sum of time for each statement

- Function calls

- Time of function’s body

- Conditionals

- Time of condition + maximum time of branch code

- Loops

- Number of iterations x time for loop body

CSE 373 SP 18 - KASEY CHAMPION 23

A Slightly Harder example

public void mystery(int n) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n * n; j++) {
System.out.println(“Hello”);

}
for (int j = 0; j < 10; j++) {

System.out.println(“world”);
}

}
}
Remember: work outside in
Solution: T(n) = n(n2 + 10) = n3 + 10n

CSE 373 WI 18 – MICHAEL LEE 24

+1 n2

+1
10

n

Modeling Complex Loops

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);

}

}

CSE 373 SP 18 - KASEY CHAMPION 25

+1 nn f(n) = n2

Keep an eye on loop bounds!

Modeling Complex Loops

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);

}

}

CSE 373 SP 18 - KASEY CHAMPION 26

+1 0 + 1 + 2 + 3 +…+ n-1 n

Summation

1 + 2 + 3 + 4 +… + n =

𝑖=1

𝑛

𝑖

= f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

𝑖=𝑎

𝑏

𝑓(𝑖)

T(n) =

+c

𝑖=0

𝑛−1

𝑗=0

𝑖−1

𝑐

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);

}

}

Simplifying Summations

CSE 373 WI 18 – MICHAEL LEE 27

T(n) =

0 + 1 + 2 + 3 +…+ n-1

(0c + 1c + 2c + 3c + … + i-1c)

+ (0c + 1c + 2c + 3c + … + i-1c)

+ (0c + 1c + 2c + 3c + … + i-1c)

+ repeat n times

+c

𝑖=0

𝑛−1

𝑗=0

𝑖−1

𝑐 =

𝑖=0

𝑛−1

𝑐𝑖 Summation of a constant

= 𝑐

𝑖=0

𝑛−1

𝑖 Factoring out a constant

=
𝑐
𝑛 𝑛 − 1

2 Gauss’s Identity

=
𝑐

2
𝑛2 −

𝑐

2
𝑛 O(n2)

n

Function Modeling: Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return n * factorial(n – 1);

}

CSE 373 SP 18 - KASEY CHAMPION 28

+1

+3
+c

+????

Function Modeling: Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return n * factorial(n – 1);

}

CSE 373 SP 18 - KASEY CHAMPION 29

+c1

+T(n-1)

+c2

C1

C2 + T(n-1)
T(n) =

when n = 0 or 1

otherwise

Mathematical equivalent of an if/else statement

f(n) =

Definition: Recurrence

Unfolding Method

T(3) =

T(n) = C1 +

Summation of a constant

T(n) = C1 + (n-1)C2

CSE 373 SP 18 - KASEY CHAMPION 30

T(n) =
when n = 0 or 1

otherwise

C1

C2 + T(n-1)

𝑖=0

𝑛−1

𝐶2

C2 + T(3 – 1) = C2 + (C2 + T(2 – 1)) = C2 + (C2 + (C1)) = 2C2 + C1

