Section 05: Midterm Review

1. Stacks and Queues

Consider a sequence of characters and the task is to reverse the sequence. Is it beneficial to use a stack or a queue to perform this task? Assume that stacks and queues are implemented using linked lists and each node in the linked list stores a character.

2. Asymptotic Analysis

For each of the following, choose a c and n_{0} which show $f(n) \in \mathcal{O}(g(n))$. Explain why your values of c and n_{0} work.
(a) $f(n)=5000 n^{2}+6 n \sqrt{n}$ and $g(n)=n^{3}$
(b) $f(n)=2^{n}$ and $g(n)=3^{n}$

3. Recurrences

Solve these recurrences (give a Big-Theta bound). If the master theorem is applicable, state which case you used. If you use unrolling or the tree method, show your work.
(a)

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+n^{2} & \text { otherwise }\end{cases}
$$

(b)

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \cdot T(n / 4)+\sqrt{n} & \text { otherwise }\end{cases}
$$

(c)

4. AVL/BST

Insert $\{6,5,4,3,2,1,10,9,8,6,7\}$ into an initially empty AVL tree.

5. Heaps

Insert $\{6,5,4,3,2,1,10,9,8,6,7\}$ into an initially empty min-heap. Write down the final heap as an array.

6. Hash tables

(a) Consider the following sequence of numbers.

$$
6,29,41,34,10,64,50
$$

Suppose the hash function is $h(k)=2 k$. Insert each number into the following hash tables and draw what their internal state looks like:
(i) A hash table that uses linear probing, with internal capacity 10. Do not worry about resizing.
(ii) A hash table that uses quadratic probing, with internal capacity 10. Do not worry about resizing.

