Section 01: Solutions

1. CSE 143 review

1.1. Reference semantics

(a) What is the output of this program?

public class Mystery2 {
public static void main(String[] args) {
Point p = new Point(11, 22);
System.out.println(p);

int n = 5;
mystery(p, n);
System.out.println(p);

p.x =p.y;
mystery(p, n);
System.out.println(p);

Point p2 = new Point(100, 200);

p = p2;
mystery(p2, n);
System.out.println(p + ” :: 7 + p2);
3
public static void mystery(Point p, int n) {
n=0;
p.x = p.x + 33;
System.out.println(p.x + 7, 7 + p.y + 7 7 + n);

3
public static class Point {
public int x;

public int y;

public Point(int x, int y) {

this.x = x;
this.y = y;
3
public String toString() {
return ”(” + this.x + 7, ” + this.y + ”)”;
3
3
3
Solution:
a1, 22)
44, 22 0
(44, 22)

55, 22 0

(55, 22)

133, 200 0

(133, 200) :: (133, 200)

1.2. Being an implementor of ArrayLists
Note: in this section, you are acting as an implementor of the MyArraylList data structure. Assume you are adding
to the following MyArrayList class with the following fields:

public class MyArrayList<T> {
private T[] data;
private int size;

// constructors and other methods ommitted for space

3
For simplicity, assume the list does not contain any null items.

(a) Write a method removeFront that takes an integer n as a parameter and removes the first n values. For
example, if a variable called list stores this sequence of values:

[8, 17, 9, 24, 42, 3, 8]

If we call 1ist.removeFront(4), the list should now store:

[42, 3, 8]

Assume that the parameter value passed is between 0 and the size of the list inclusive.

Solution:

public void removeFront(int n) {
for (int i = 0; i < this.size - n; i++) {
this.datal[i] = this.data[i + nl;
3

this.size -= n;

(b) Write a method removeAll that takes in an item of type T and removes all occurrences of that value from the
list.

For example, if the variable named list stores the following values:
[“a”, “b”, “c”, “d”, “a”, “d”, “d”, “e”, “f”, “d”]

If we call 1ist.removeAll(“d”), the list should now store:

[“a”, “b”, “c”, “a”, “e”, “f”]

Assume you have previously implemented a method called remove that takes an index as a parameter and
removes the value at the given index.

Solution:

public void removeAll(T value) {
for (int i = 0; i < this.size; i++) {
if (this.data[i].equals(value)) {
this.remove(value, i);
i

(c) Write a method stretch that takes an integer n as a parameter and that increases a list by a factor of n by
taking each element in the original list and replacing it with n copies of that integer. For example, if a variable

called list stores this squence of values:

[18.2, 7.5, 4.2, 24.9]

If we call 1ist.stretch(3), the list should now store:

[18.2, 18.2, 18.2, 7.5, 7.5, 7.5, 4.2, 4.2, 4.2, 24.9, 24.9, 24.9]
Make sure to implement the logic to resize the array as necessary.

Solution:

public void stretch(int n) {

this.ensureCapacity(n * this.size);

for (int i = this.size - 1; i >=0; i-) {
for (int j = 0; j < n; j++) {

this.datali * n + j] = this.datal[i];

3

3

this.size *= n;

3

private void ensureCapacity(int newSize) {
if (this.data.length < newSize) {
T[] newData = (T[]) new Object[newSize];
for (int i = 0; i < this.size; i++) {
newDatal[i] = this.datal[i];
3

this.data = newData;

1.3. Interfaces in Java

Consider the following Interface for sets.

public interface GenericSets{
public int size();
public boolean isMember(int t);
public boolean add(int t);
public boolean remove(int t);

}
For simplicity assume that every set is a subset of {1,2,---,1000}.

(a) Define a class that implements the GenericSets Interface in which the sets are stored in an integer array.
Solution:

public class MySet implements GenericSets{

private int[] set;

private int size;

private int maxSize; // assumed that maxSize is at most 1000

public MySet(int m){
set = new int[m];
maxSize = m;
size = 0;

3

public int size(){
return size;

3

public boolean isMember(int a){
for(int i=0; i<size;i++){
if(set[i] == a){
return true;
3
3
return false;

}

public boolean add(int a){
if(size == maxSize){
return false;

3
if(isMember(a)){

return true;
3

set[size] = a;
size = size + 1;
return true;

3

public boolean remove(int a){
for(int i=0;i<size;i++){
if(set[i]==a){
for(int j=i; j<size-1;j++){
set[j] = set[j+17;
3

size = size - 1;
return true;
3
3

return false;

(b) Define a class that implements the GenericSets Interface in which the sets are stored in a boolean array.
Solution:

public class MySet implements GenericSets{
private boolean[] set; // set[i] is true iff i+1 is in the set
private int size;

public MySet(){
set = new boolean[10007;
size = 0;
for(int i1=0;i<1000;i++){

set[i] = false;

3

3

public int size(){
return size;

3

public boolean isMember(int a){
return setl[a];

}

// the implementation for the rest of the functions is straightforward

b

1.4. Being an implementor of LinkedLists

Note: in this section, you are acting as an implementor of the MyLinkedList data structure. Assume you are adding
to the following MyLinkedList class:

public class MyLinkedList<T> {
private Node<T> front;
private static class Node<T> {
public final T data;
public Node<T> next;

// constructors omitted for space

3

Do not create any new nodes (unless you are trying to implement stretch). The focus of these problems is to
practice manipulating the links of list nodes. For simplicity, assume the list does not contain any null items.

(a) Try implementing the methods described in questions 1.2.a, 1.2.b, and 1.2.c for MyLinkedList.

Solution:

public void removeFront(int n){
Node<T> curr = this.front;
Node<T> prev = null;
for (int i = 0; i < n; i++) {

prev = curr;
curr = curr.next;
prev.next = null;
3
this.front = curr;

}

public void removeAll(T toDelete) {

while(toDelete.equals(this.front)){
remove(0);

3

int i = 0;

Node<T> curr = this.front;

Node<T> prev = null;

while (curr != null) {
if (curr.data.equals(toDelete)) {

remove(i);

curr = prev.next;
} else {

i++;

’
prev = curr;
curr = curr.next;

3

public void stretch(int n) {
Node<T> curr = this.front;
while (curr != null) {
for(int i = 0; 1 < n-1; i++){
curr.next = new Node<T>(curr.data, curr.next);

curr = curr.next;

b

curr = curr.next;

(b) Write a method switchPairs that switches the order of each pair of elements: your method should switch the
first two values, then the next two, and so forth. For example, if a variable called list stores this sequence of
values:

[3, 7, 4, 9, 8, 12]

If we call 1ist.switchPairs(), the list should now store:

[7, 3, 9, 4, 12, 8]

If there are an odd number of values, the final element is not moved.

Solution:

An iterative solution is shown (although a recursive solution is cleaner, that task is left to the reader):

public void switchPairs() {
if (this.front != null && this.front.next != null) {

Node<T> current = this.front.next;

this.front.next = current.next;

current.next = this.front;

this.front = current;

current = current.next;

while (current.next != null && current.next.next != null) {
Node<T> temp = current.next.next;
current.next.next = temp.next;
temp.next = current.next;
current.next = temp;
current = temp.next;

(c) Write a method reverse that reverses the order of elements in a linked list. For example, if a variable called
list stores this sequence of values:

[Ua”’ Ub”’ “C”, “d”, ((e”]
If we call 1list.reverse(), the list should now store:
[“e”, ‘ld’!, “C”, “b"’ “a”]

Solution:

public void reverse() {

Node<T> current = this.front;

Node<T> previous = null;

while (current != null) {
Node<T> nextNode = current.next;
current.next = previous;
previous = current;
current = nextNode;

3

this.front = previous;

(d) Write a method transferFrom that accepts a second MyLinkedList as a parameter that moves values from the
second list to this list (and empties the second list). For example, suppose the two lists store these sequences

of values:

list1: [8, 17, 2, 4]
list2: [1, 2, 3]

The call of 1ist1.transferFrom(1list2); should leave the lists as follows:

list1: [8, 17, 2, 4, 1, 2, 3]
list2: []

Note that order matters: doing list2.transferFrom(list1) will NOT produce the same output as above.

Either list may be empty. Assume, however, that the given list will not be null.

Solution:

public void transferFrom(MyLinkedList<T> other) {
if (this.front == null) {
this.front = other.front;

1 else {
Node<T> current = this.front;
while (current.next != null) {

current = current.next;

3

current.next = other.front;

}

other.front = null;

10

1.5. Being a client of Stacks and Queues

For the following problems, you will practice being the client of a data structure and two ADTs. Assume that you
are given a class named DoubleLinkedList that implements both the Stack and Queue interfaces.

For simplicity, assume the stacks and queues you are given will never contain any null elements.

(a) Write a static method copyStack that accepts an Stack<T> as a parameter and returns a new stack containing
exactly the same elements as the original. Your method should leave the original stack unchanged after the
method is over. You may use one Queue<T> as auxiliary storage.

Solution:

public Stack<T> copyStack(Stack<T> stack) {

Queue<T> queue = new LinkedList<T>();

Stack<T> newStack = new Stack<T>();

while (!stack.isEmpty()) {
queue.add(stack.pop());

3

while (!queue.isEmpty()) {
stack.push(queue.remove());

}

while (!stack.isEmpty()) {
queue.add(stack.pop());

}

while (!queue.isEmpty()) {
T element = queue.remove();
newStack.push(element);
stack.push(element);

b

return newStack;

(b) Write a static method named rearrange that accepts an Queue<Integer> and rearranges the values so that all
of the even values appear before the odd values and otherwise preserves the original order of the list. For
example, suppose a queue called q stores this sequence of values:

front [3, 5, 4, 17, 6, 83, 1, 84, 16, 37] back
If we call q. rearrange(), the queue should now store:

front [4, 6, 84, 16, 3, 5, 17, 83, 1, 371 back

evens odds

Note that all of the evens are at the front, the odds are in the back, and that the order of the evens and the
odds are the same as the original list. You may use one Stack<Integer> as auxiliary storage.

Solution:

public static void rearrange(Queue<Integer> q) {
Stack<Integer> stack = new Stack<Integer>();
int oldSize = queue.size();
for (int 1 = 0; i < oldSize; i++) {
int n = queue.remove();
if (n[\%2==20) ¢
queue.add(n);
} else {
stack.push(n);

11

3

3

int evenCount = queue.size();

while (!stack.isEmpty()) {
queue. add(stack.pop());

3

for (int i = 0; i < evenCount; i++) {
queue.add(q.remove());

3

for (int i = 0; i < oldSize - evenCount; i++) {
s.push(qg.remove());

3

while (!s.isEmpty()) {
g.add(s.pop());

(c) Write a static method named isPalindrome that accepts a Queue<T> as a parameter and returns true if those
values form a palindrome and false otherwise. For example, suppose a queue of ints called g stores this
sequence of values:

front [3, 5, 4, 17, 6, 6, 17, 4, 5, 3] back

Then calling isPalindrome would return true, because the queue is exactly the same forwards and backwards
(the definition of a palindromic object).

The queue must remain in its original state once the method is over. Assume that the empty queue is a
palindrome. You may use one Stack<T> as auxiliary storage.

Solution:

public boolean isPalindrome(Queue<T> queue) {

Stack<T> stack = new Stack<T>();

for (int i = 0; i < queue.size(); i++) {
int n = queue.remove();
queue.add(n);
stack.push(n);

3

boolean ok = true;

for (int i = 0; i < queue.size(); i++) {
int n1 = queue.remove();
int n2 = stack.pop();
if (Inl.equals(n2)) {

ok = false;
3
queue.add(nl);
3
return ok;

12

2. Design decisions: Selecting ADTs and data structures

For each of the following scenarios, choose:

(a) An ADT: Stack or Queue

(b) A data structure: array list or linked list with front or linked list with front and back
Justify your choice.

(a) You're designing a tool that checks code to verify all opening brackets, braces, parenthesis, etc... have closing
counterparts.

Solution:

We'd use the Stack ADT, because we want to match the most recent bracket we’ve seen first.

Since Stacks push and pop on the same end, there is no reason to use an implementation with two pointers.
(We don’t need access to the “back” ever.)

Asymptotically, there is no difference between the LinkedList with a front pointer and the Array im-
plementation, but cache locality will likely be a problem with the LinkedList. (Arrays are contiguous in
memory, but linked lists are stored using arbitrary pointers.)

(b) Disneyland has hired you to find a way to improve the processing efficiency of their long lines at attractions.
There is no way to forecast how long the lines will be.

Solution:

We’d use the Queue ADT here, because we’re dealing with...a line.

The important thing to note here is that if we try to use the implementation of a LinkedList with only a
front pointer, either add or next will be very slow. That is clearly not a good choice.

Arguably, the LinkedList implementation with both pointers is better than the array implementation
because we will never have to resize it.

(c) A sandwich shop wants to serve customers in the order that they arrived, but also wants to look ahead to
know what people have ordered and how many times to maximize efficiency in the kitchen.

Solution:

This is still clearly the Queue ADT, but it’s unclear that any of these implementations are a good choice!

One of the cool things about data structures is that if only one isn’t good enough, you can use two. If we
only care about the “normal queue features”, then we would probably use the LinkedList implementation
with one pointer. However, we can ALSO simultaneously use a Map to store the “number of times a food
item appears in the queue”.

13

3. Adapting ADTs and data structures

Choose appropriate ADTs, data structures, and algorithms to solve the following problems. You may use any ADT
and data structure you can think of, including ones covered in CSE 143. Feel free to be creative!

For your reference, between CSE 143 and 373 we’ve covered the following ADTSs: Lists, Stacks, Queues, Sets, Maps,
PriorityQueues. We've also discussed the following data structures: array lists, linked lists, trees, hash maps.

(a) We want to call all the phone numbers with a particular area code in someone’s phone book.

Describe how you would implement this. What is the time complexity of your solution? The space complexity?

Solution:

One way to solve this would be using a HashMap where the keys are the area codes and the values is a list
of corresponding phone numbers. We will need to parse the phone number to get the first three numbers.

Another way to solve this is by using a kind of data structure called a Trie. A trie is a kind of data structure
based around the concept of a tree. However, unlike standard binary trees, tries have:

* A variable number of children (instead of just two)
¢ Have “labels” associated with each branch of the tree

Usually, we store the children of each node in a Map: the keys are the labels, the values are references to
children node.

What we can do here is to make each node store exactly 10 children, labeling each branch from 0 to 9.
We then take the first digit in the phone number and pick the branch with that label. From that node, we
take the second digit and pick that branch.

If there are any nodes missing during this process, we create them as we go.

We repeat, using the entire phone number as the “route” to traverse the trie. Once we reach the end of
the phone number, we stop, and set that node’s data field to true to indicate that “route” corresponds to
a valid phone number.

Then, to find all the phone numbers to call, we would use the area code to partially travel down the Trie
then visit all children nodes to find the phone numbers to print.

If we compare these two approaches, both will have the same runtime efficiency, but the Trie will be more
space-efficient in the average case.

If we let n be the total number of phone numbers and e be the expected number of phone numbers per
area code, we can find that it takes ©(n) time to build either the HashMap or the Trie. Likewise, given
some area code, it takes ©(e) time to visit and call each phone number.

(Initially, it may seem like the Trie would be slower due to the traversals. However, recall that the depth
of the trie is always equal to the length of a phone number, which is a constant value.)

The reason why the Trie turns out to be more space-efficient on average is because the Trie is capable
of storing near-duplicate phone numbers in less space then the HashMap. If we have the phone numbers
123-456-7890, 123-456-7891, and 123-456-7892, the map must store each number individually whereas
the Trie is able to combine them together and only branch for the very last number.

That said, in the absolute worst case where we try and insert every single possible 10-digit permutation of
numbers into either data structure, both the HashMap and the Trie will end up taking up the same amount
of space. However, this is an unlikely scenario, given how phone numbers are typically structured.

14

(b)

(0

Long long ago, before smartphones were a thing, people who wanted to enter text using phones needed some
way of entering arbitrary text using just 9 keys (the digits 1 through 9).

One such system is called “Text on nine keys” (T9). It associates 3 or 4 letters per each digit and lets you type
words using just a single keypress per letter. To do this, it takes the sequence of digits entered and looks up
all words corresponding to that sequence of keypresses within a fast-access dictionary of words and orders
them by frequency of use.

For example, if the user types in ‘2665’, the output could be the words [book, cook, cool]. Describe how
you would implement a T9 dictionary for a mobile phone.

(For reference, the number ‘2‘ is associated with the letters ‘abc’, the number ‘3’ is associated with ‘def’, etc...
The number ‘9‘ is associated with ‘wxyz’. The numbers ‘1’ and ‘0’ are used for other purposes.)

Describe how you would implement this. What is the time complexity of your solution? The space complexity?

Solution:

One way to implement this would be by using a Trie. The routes (branches) are represented by the digits
and the node’s values are collection of words. So if you typed in 2, 6, 6, 5, you would choose the child
representing 2, then 6, then 6, then 5, traveling four layers deep into the Trie.

Then, that child node’s value would contain a collection of all dictionary words corresponding to this
particular sequence of numbers.

To populate the Trie, you would iterate through each word in the dictionary, and first convert the word
into the appropriate sequence of numbers.

Then, you would use that sequence as the key or “route” to traverse the Trie and add the word.

One refinement we could make to our T9 system is to train it so it “gains familiarity” with the words and
phrases the current user likes to commonly used. So, if a particular user uses the word “cool” more frequently
then the word “book”, eventually the T9 system, given the input ‘2665’, will learn to return [cool, book,
cook] instead of [book, cook, cooll.

Describe how you would implement this. What is the time complexity of your solution? The space complexity?

Solution:

One possible way of doing this would be to store, at each node, how frequently each word was accessed
and use that information to sort the list of results.

To help provide reasonable results, we could provide “pre-trained” weights and adjust them over time as
users use their phones more and more frequently.

The main issue we run into this solution is that eventually, our word counts will overflow (if we increment
the counts very frequently). If our word pattern habits start changing, the T9 system will also be relatively
slow to update, especially if some counts are very high and some are very low.

One way we could work around this problem is to keep track of the counts for just the past n messages
or n days. This would solve the overflow and “slow update” problem - the challenge now would be to
efficiently keep track of and manage this constantly changing data structure.

15

	CSE 143 review
	Reference semantics
	Being an implementor of ArrayLists
	Interfaces in Java
	Being an implementor of LinkedLists
	Being a client of Stacks and Queues

	Design decisions: Selecting ADTs and data structures
	Adapting ADTs and data structures

