CSE 373 18wi: Practice Midterm

Name:

UW email address:

Instructions

* Do not start the exam until told to do so.

* You have 80 minutes to complete the exam.

* This exam is closed book and closed notes.

* You may not use a cell phone, a calculator, or any other electronic devices.

* Write your answers neatly in the provided space. Be sure to leave some room in the margins:
we will be scanning your answers.

* If you need extra space, use the back of the page.

* If you have a question, raise your hand to ask the course staff for clarification.

Question = Max points \ Earned

Question 1 ??
Question 2 ??
Question 3 ??
Question 4 ??
Question 5 ??
Question 6 ??
Question 7 ??
Question 8 ??
Question 9 ??
Total 2?

Additional notes about this practice exam

* This practice midterm is structured in roughly the same way the actual midterm is.

* These questions are either roughly about the same difficulty or are slightly harder then the
questions you will be asked on your midterm.

* Since this is a new practice exam, our solutions may contain a few mistakes or typos. Please
ask on Piazza if you see something that does not make sense.

1. AVL rotations

Insert the following sequence of values into an AVL tree in the given order.

a! d’ h! m’ p! a’ g7 n’ t’ m, OJ Z

2. Hash tables

Consider the following sequence of key-value pairs:
(3.4,), (7.1, b), (9.6, ¢), (3.5, d), (8.4, e), (3.4, 0, (3.1, 8), (2.7, h)

Suppose that these floats are implemented such that they use the hash function “h(k) = roundDown(k)”. For
example, the key 3.4 would have a hash code of 3; the key 9.9 would have a hash code of 9.

(a) Insert the above sequence of key-value pairs in the given order into a hash table with an internal array of size 5
using separate chaining. Assume each bucket is implemented using an binary search tree. Do not worry about
resizing the internal array.

(b) Insert the same pairs into an a hash table with capacity 10 that uses quadratic probing. Again, do not worry
about resizing the internal array.

3. Asymptotic analysis

(a) Consider the following two functions:

1, G ifn <5
Jn) = 10" 9(n) = {99n +log(n) otherwise

Show that f(n) € Q(g(n)) is true by finding a ¢ and ng that satisfies the definition of “dominates” and big-{2.
Please show your work.

(b) Suppose we discovered a function h(n) and discovered that the tightest possible upper bound is h(n) € O (n)
and the tightest possible lower bound is h(n) € Q (log(n)). Draw a plot of what this function might look like.

4. Eyeballing Big-O bounds

For each of the following snippets of code, please give a big-O bound of the worst-case runtime with respect to n.
You do not need to justify your answer.

(a) public void partA(int n) { Your answer here:

for (int i = 0; i < n % n; i++) {
if (i %2==0){
for (int j = 0; j < 1i; j++) {
System.out.println(”?”);

3
3
}
}
(b) public void partB(int n) { Your answer here:
// An AvlDictionary is a dictionary internally implemented
// using an AVL tree.
IDictionary<Integer, Integer> dict = new AvlDictionary<>();
for (int i = 0; i < n; i++) {
if (i < 100000) {
for (int j = 0; j < i; j++) {
dict.put(j = i, i);
3
1 else {
dict.put(i, i);
3
3
3
(©) public void partC(int n) { Your answer here:
IDictionary<Integer, Integer> dict = new AvlDictionary<>();
for (int i = 0; i < n; i++) {
dict.put(4, i);
for (int j = 0; j < dict.size(); j++) {
System.out.println(dict.containsKey(j));
3
}
}
(d public void partD(int n) { Your answer here:
if (n==0) {
System.out.println(”...”);
T else {
System.out.println(”...”);
partD(n - 1)
3
3

5. Modeling code

Consider the following Java program. Let n represent the value of the input parameter n and let m represent the
value of the parameter m.

public static int mystery(int n, int m) {
if (n >= 40) {
for (int 1 = 0; i < n *m; i++) {
if (i %m==20){

System.out.println(”...”);
}
}
return -2 * mystery(n - 3, m / 3) + 3 * mystery(n - 5, m + 3);
} else {

return m * 2;

}

In the following questions, you will be asked to construct several mathematical functions modeling different aspects
of the mystery method. Your answers to all three questions should be a recurrence. Your recurrence may include
summations, if you want. You do NOT need to find a closed form to your models.

(a) Construct a mathematical function 7'(n,m) that represents the approximate worst-case runtime of mystery.

(b) Construct a mathematical function P(n, m) that represents the total number of lines printed out by mystery.

(c) Construct a mathematical function F'(n,m) that represents the exact integer output of mystery. That is, it
should be the case that F'(n, m) == mystery(n, m).

6. Systems and B-Trees

(a) Consider the following code:

public static int sum(IList<Integer> list) {

int output = 0;

for (int i = 0; i < 128; i++) {
// Reminder: foreach loops in Java use the iterator behind-the-scenes
for (int item : list) {

output += item;

3

}

return output;

}

You try running this method twice: the first time, you pass in an array list, and the second time you pass in a
linked list. Both lists are of the same length and contain the exact same values.

You discover that calling sum on the array list is consistently 4 to 5 times faster then calling it on the linked
list. Why do you suppose that is?

(b) Suppose you are trying to use a B-Tree somebody else wrote for your system. You know the following facts:
* M =10and L =12
* The size of each pointer is 16 bytes
* The size of each key is 14 bytes
* The size of each value is 11 bytes

Assuming M and L were chosen wisely, what is most likely the page size on this system?

7. Short answer

This section has questions that require very short answers. For full credit, write at most two to three sentences per
each question.

(a) Suppose you were trying to implement edit/undo functionality in an image editing program. We want to
implement this by keeping track of each operation the user makes. Which ADT would be the most appropriate
way of storing these operations: a stack, a queue, or a list? Pick one, and briefly justify.

(b) What is the worst-case runtime to append a value to the end of a singly-linked list?

(c) True or false: If f(n) € O (g(n)) is true, then g(n) € O (f(n)) is also always true. Briefly justify.

3»

(d) True or false: “f(n) € O (n®)” means the exact same thing as “f(n) has a worst-case runtime of n*”. Briefly

justify.

(e) Suppose you need a dictionary where you can traverse over the keys in sorted order. Which data structure
should you use?

(f) True or false: an AVL tree is always more asymptotically efficient then a BST. Briefly justify.

(g) Suppose you want to implement an efficient dictionary where the iterator always returns key-value pairs in the
order the client added them to the dictionary. You know the client will never remove any key-value pairs or
update any previously-added pairs. Briefly describe how you would implement this dictionary by combining
two data structures we studied in class. The put(...) method should still have an average runtime of © (1).

(h) True or false: A hash table’s get(...) method will always have a runtime of © (1). Briefly justify.

(i) Which is faster: printing a list of numbers stored in an in-memory array or stored in a text file? Briefly justify.

8. Debugging

In this problem, we will consider an algorithm named isBalanced(String str) that returns “true” if the input
string has a “balanced” number of parenthesis and false otherwise. We say a string has “balanced” parenthesis if
each opening paren is paired with a matching closing one.

For example, this string is balanced: “((a)b)”. This string is also balanced: “(x)(y)(z)”.
However, the following two strings are not balanced: “((((” and “)))z(".

(a) List at least four distinct kinds of inputs you would try passing into the isBalanced algorithm to test it. For
each input, also list the expected outcome (assuming the algorithm was implemented correctly). Be sure to
think about different edge cases.

(b) Here is one (buggy) implementation of this algorithm in Java. List every bug you can find.

boolean isBalanced(String str) {
if (str == null || str.size() == 0) {
return false;
3
int numUnmatchedOpenParens = 0;
for (char c : str) {
if (c=="("){
// Handle opening parens
numUnmatchedOpenParens += 1;

1 else {
// Handle closing parens
numUnmatchedOpenParens -= 1;
3
3
return numUnmatchedOpenParens == 0;

10

9. Design

In this problem, you will implement an algorithm named containsString(String searchTerm, String document)
that returns ‘true’ if the document contains the search term, and false otherwise.

A naive way of implementing this is to use two nested loops that check if searchTerm is equal to a substring of
document. However, this is inefficient if searchTerm is large: comparing two strings of length n takes O (n) time
since we need to check each char one by one.

Your goal is design a faster algorithm by using a kind of hashing algorithm known as a “rolling hash”. A rolling
hash implements the following methods:

public class RollingHash {
// Instructs the object to keep track of the last 'k' characters eaten.
public RollingHash(int k) { ... }

// The number of characters remembered. Returns a number between 0 to k.
public int size() { ... }

// Adds the given char to the internal state. If size() > k, forgets the oldest char eaten.
public void eat(char ¢c) { ... }

// Returns the hash of the last k characters eaten
public int getHash() { ... }
3

Amazingly, every method in this class has a worst-case runtime of O (1)!

(a) List at least four distinct kinds of inputs you would try passing into your containsString algorithm to test it.
For each input, also list the expected outcome (assuming the algorithm was implemented correctly). Be sure
to think about different edge cases.

11

(b) Write an English description or high-level pseudocode describing an algorithm that implements containsString.
Note: do NOT write Java code.

You may assume RollingHash is already implemented for you.

(c) Provide a tight big-© bound of the worst-case runtime of your algorithm. Write your answer in terms of s and
d, where s is the length of the searchTerm string and d is the length of the document string.

Briefly justify your answer

12

This page is intentionally left empty

Feel free to use this page for scratch paper.

13

	AVL rotations
	Hash tables
	Asymptotic analysis
	Eyeballing Big- bounds
	Modeling code
	Systems and B-Trees
	Short answer
	Debugging
	Design

