
Homework 03: Midterm Review
Due date: Monday, 7/23 at 11:59 pm
Instructions:
Submit a typed or neatly handwritten scan of your responses on Canvas in PDF format.

Note: you will need to submit a separate PDF per each section.

1. Big-O Notation

Let f(n) = 106 · n2 + 108 · n1.5 + n3 + 1010 · n2.99. Show that f(n) = O(n3) by finding a constant c and an integer
n0 and applying the Big-O definition.

2. Solving Recurrences

(a) For the following recurrence relations, state which case of the Master Theorem applies and give the Big-Θ
runtime bound.

(i)

T (n) =

{
1 if n = 1

7 · T (n/2) + n2 otherwise

(ii)

T (n) =

{
1 if n = 1

4 · T (n/2) + n2 otherwise

(iii)

T (n) =

{
1 if n = 1

2 · T (n/2) +
√
n otherwise

(iv)

T (n) =

{
1 if n = 1

4 · T (n/2) + n3 otherwise

(v)

T (n) =

{
1 if n = 1

3 · T (n/2) + n otherwise

1

(b) Consider the recurrence

T (n) =

{
1 if n ≤ 2

2 · T (
√
n) + logn otherwise

Solve the above recurrence using the tree method. First unroll two levels of the tree and draw this unrolling
as a tree. Finish your analysis by completing the missing entries of this table.

of nodes at level i

input size at level i

work per node at level i

total work at level i

level of base case

number of nodes in the base case level

expression for recursive work

expression for non-recursive work

closed form for total work

simplest Big-Θ for the total work

3. Binary Search Trees

(a) Consider the following Binary Search tree:

f

c

b

a

e

d

h

g i

Write down the

(i) in-order traversal

2

(ii) preorder traversal

(iii) postorder traversal

Do you notice an interesting property of the in-order traversal? What is it?

(b) Let a binary search tree be defined by the following class:

public class IntTree {

private IntTreeNode overallRoot;

// constructors and other methods omitted for clarity

private class IntTreeNode {

public int data;

public IntTreeNode left;

public IntTreeNode right;

// constructors omitted for clarity

}

}

In class, we saw how to search for an element in a binary search tree. This question will demonstrate that
binary search trees are more powerful. Describe an algorithm that calculates the k’th smallest element in the
tree. (k, the input, is a number in {1, 2, · · · , n}, where n is the number of nodes in the tree). You may find
it helpful to modify the definition of IntTreeNode in order to accomplish this. Your algorithm should run in
O(h) time, where h is the height of the tree. An O(n) solution will be given partial credit.

4. AVL Tree Implementation

Write pseudocode for the AVL tree methods Balance, RotateLeft, and RotateRight. Assume that the rest of the data
structure is implemented as in the Java code here https://courses.cs.washington.edu/courses/cse373/18su/

files/homework/AVLTree.java.

You may use the skeleton of Balance from that code as a guide. Note you are not required to write your solution in
Java, pseudocode is sufficient.

5. Hashing

Let the capacity of the hash table be 10 and the hash function be h(x) = x. Insert elements

42, 102, 12, 33, 25, 14, 62

to a hash table

(a) that uses linear probing

(b) that uses quadratic probing

Write down the total number of collisions and the hash table after all insertions in both cases. Why is the secondary
clustering in quadratic probing less problematic than the primary clustering in linear probing (i.e. why are there
fewer collisions)?

3

https://courses.cs.washington.edu/courses/cse373/18su/files/homework/AVLTree.java
https://courses.cs.washington.edu/courses/cse373/18su/files/homework/AVLTree.java

	Big-O Notation
	Solving Recurrences
	Binary Search Trees
	AVL Tree Implementation
	Hashing

