
Final Review

CSE 373: Data Structures and Algorithms

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

1

mailto:shri@cs.washington.edu

Practice exam posted
- Use it as reference for exam question formats, not as a study material.

TA-led review session
- Sunday 2-5pm in Smith Hall (SMI) 120

Office hours on Monday
- Check the course calendar tomorrow

HW5 Part 2

Today

CSE 373 AU 18 2

Type of questions
1. Multiple choice questions (MCQ)
- Select one correct choice
- Select multiple correct choices

2. Short-answer question (SAQ)
- Answer in one word or one sentence

3. Medium-answer question (MAQ)
- Expected in 4-5 sentences
- E.g., explain how you would solve so and so problem

Exam format: Type of questions

CSE 373 AU 18 3

- Somewhat different than previous term exams that you may have seen.

- Ordered roughly in the order of difficultly

Three (or maybe four) sections

1. Warmup – mostly MCQs and SAQs

2. Basic – mostly MCQs and SAQs

3. Applied – mostly MAQs

4. … ?

Exam format

CSE 373 AU 18 4

1. Manage your time well

2. Don’t dwell on MCQs for too long

3. (Rough guideline) 1 point worth MCQ means you should not spend more than 1 minute on it.

4. What type of questions you won’t get on the exam:
1. Execute Primm’s algorithm on this graph and fill the Primm’s algorithm table
2. Insert given list of values in a hash table that uses quadratic probing
3. Insert elements in heap or AVL tree
4. Questions asking you to write java code
5. Find c and n0, or solve summations

Exam Tips

CSE 373 AU 18 5

1. No need to explain how the algorithms we covered in the class. You can use them as black box
tools in your solution, unless you are modifying the algorithm, in which case you need to
describe your modification.

2. Don’t worry about constant factors unless the question explicitly asks otherwise.

3. Expectation: Answer in 4-5 sentences.

(For partial credit)

4. A brute force solution that works will get more partial credit than an efficient but incomplete
answer. So, if you are stuck at finding and efficient, but know a brute force solution give that first.

5. Solving a problem may involve multiple steps. If you know how to solve one step, but not the
other, write down solution to step 1 for partial credit.

Exam Tips: Medium-answer questions

CSE 373 AU 18 6

Review

CSE 373 AU 187

ADTs vs Data Structures
Data Structure
- A way of organizing and storing related data points
- An object that implements the functionality of a specified ADT
- Describes exactly how the collection will perform the required operations
- Examples: LinkedIntList, ArrayIntList

Algorithm
- A series of precise instructions used to perform a task
- Examples from CSE 14X: binary search, merge sort, recursive backtracking

Abstract Data Type (ADT)
- A definition for expected operations and behavior
- A mathematical description of a collection with a set of supported operations

and how they should behave when called upon
- Describes what a collection does, not how it does it
- Can be expressed as an interface
- Examples: List, Map, Set

CSE 373 SP 18 - KASEY CHAMPION 8

List ADT
list: stores an ordered sequence of information.
- Each item is accessible by an index.
- Lists have a variable size as items can be added and removed

Supported Operations:
- get(index): returns the item at the given index
- set(value, index): sets the item at the given index to the given value
- append(value): adds the given item to the end of the list
- insert(value, index): insert the given item at the given index maintaining order
- delete(index): removes the item at the given index maintaining order
- size(): returns the number of elements in the list

CSE 373 SP 18 - KASEY CHAMPION 9

Stack ADT

CSE 373 SP 18 - KASEY CHAMPION 10

stack: A collection based on the principle of adding elements and retrieving them in the opposite
order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine
the last element added (the "top").

basic stack operations:
- push(item): Add an element to the top of stack
- pop(): Remove the top element and returns it
- peek(): Examine the top element without removing it
- size(): how many items are in the stack?
- isEmpty(): true if there are 1 or more items in stack, false otherwise

stack

top 3
2

bottom 1

pop, peekpush

Queue ADT

CSE 373 SP 18 - KASEY CHAMPION 11

queue: Retrieves elements in the order they were added.

- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only examine/remove the

front of the queue.

basic queue operations:

- add(item): aka “enqueue” add an element to the back.

- remove(): aka “dequeue” Remove the front element and return.

- peek(): Examine the front element without removing it.

- size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise

queue

front back
1 2 3

addremove, peek

Map ADT (Dictionary)

CSE 373 SP 18 - KASEY CHAMPION 12

map: Holds a set of unique keys and a collection of values, where each key is associated with one
value.
- a.k.a. "dictionary", "associative array", "hash"

operations:
- put(key, value): Adds a

mapping from a key to
a value.

- get(key): Retrieves the
value mapped to the key.

- remove(key): Removes
the given key and its
mapped value.

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Tree Height
What is the height of the following trees?

CSE 373 SP 18 - KASEY CHAMPION 13

1

2 5

7

7

overallRoot overallRoot overallRoot

null

Height = 2 Height = 0 Height = -1 or NA

Traversals
traversal: An examination of the elements of a tree.
– A pattern used in many tree algorithms and methods

Common orderings for traversals:
– pre-order: process root node, then its left/right subtrees
– 17 41 29 6 9 81 40
– in-order: process left subtree, then root node, then right
– 29 41 6 17 81 9 40
– post-order: process left/right subtrees, then root node
– 29 6 41 81 40 9 17

CSE 373 SP 17 – ZORA FUNG 14

4081

941

17

629

overallRoot

Binary Search Trees
A binary search tree is a binary tree that contains comparable items such that for every node, all
children to the left contain smaller data and all children to the right contain larger data.

CSE 373 SP 18 - KASEY CHAMPION 15

10

9 15

7 12 18

8 17

AVL trees: Balanced BSTs

AVL Trees must satisfy the following properties:
- binary trees: every node must have between 0 and 2 children

- binary search tree (BST property): for every node, all keys in the left subtree must be smaller and all keys in the right
subtree must be larger than the root node

- Balanced (AVL property): for every node, there can be no more than a difference of 1 in the height of the left
subtree from the right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

The AVL property:

1. ensures depth is always O(log n) – Yes!

2. is easy to maintain – Yes! (using single and double rotations)

CSE 373 AU 18 – SHRI MARE 16

Four cases to consider

x

y

z

A

B C

D

Insert location Solution

Left subtree of left child of y Single right rotation

Right subtree of left child of y Double (left-right)
rotation

Left subtree of right child of y Double (right-left)
rotation

Right subtree of right child of y Single left rotation

CSE 332 SU 18 – ROBBIE WEBER

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.
How do we find an unbalanced node?
- Just go back up the tree from where we inserted.

How many rotations might we have to do?
- Just a single or double rotation on the lowest unbalanced node.
- A rotation will cause the subtree rooted where the rotation happens to have the same
height it had before insertion.

CSE 332 SU 18 – ROBBIE WEBER

- data = (key, value)

- operations: put(key, value); get(key); remove(key)

- O(n) with Arrays and Linked List

- O(log n) with BST and AVL trees.

- Can we do better? Can we do this in O(1) ?

Hash tables: Motivation

CSE 373 AU 18 – SHRI MARE 19

There are multiple strategies. In this class, we’ll cover the following three:

1. Separate chaining

2. Open addressing
- Linear probing
- Quadratic probing

3. Double hashing

Strategies to handle hash collision

CSE 373 AU 18 – SHRI MARE 20

Hash tables review
Hash Tables:
- Efficient find, insert, delete on average, under some assumptions
- Items not in sorted order

Resizing:
- Always make the table size a prime number.
-! determines when to resize, but depends on collision resolution strategy.

Things to know:
- How different collision strategies work
- Advantages and disadvantages of different strategies
- How insert, find, delete works (or should not be implemented)

Heap is a tree-based data structure that satisfies

- (a) structure property: it’s a complete tree

- (b) heap property, which states:
- for min-heap: !"#$%& ≤ (ℎ*+,#$%
- for max-heap: !"#$%& ≥ (ℎ*+,#$%

- Operations of interest:
- removeMin()
- peekMin()
- insert()

- Applications: priority queue, sorting, ..

Heap review

CSE 373 AU 18 – SHRI MARE 22

Review

Stable
- In the output, equal elements (i.e., elements with equal keys) appear in their original order

In-place
- Algorithm uses a constant additional space, !(1) extra space

Adaptive
- Performs better when input is almost sorted or nearly sorted
- (Likely different big-O for best-case and worst-case)

Fast. ! (% log %)

No algorithm has all of these properties. So choice of algorithm depends on the situation.

Desired properties in a sorting algorithm

CSE 373 AU 18 23

- ! "#
- Insertion sort
- Selection sort
- Quick sort (worst)

- !(" log ")
- Merge sort
- Heap sort
- Quick sort (avg)

- Ω(" log ") -- lower bound on comparison sorts

- !(") – non-comparison sorts
- Bucket sort (avg)

Sorting algorithms – High-level view

CSE 373 AU 18 24

n

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1

n
2

n
4

...

1 1

...

1 1

n
4

...

1 1

...

1 1

Tree method

CSE 373 AU 18 25

Level

Number
of

Nodes
at level

Work per
Node

Work per
Level

0

1

2

!

base

Last recursive level:

Very important technique in algorithm to attack problems

Three steps:

1. Divide: Split the original problem into smaller parts

2. Conquer: Solve individual parts independently (think recursion)

3. Combine: Put together individual solved parts to produce an overall solution

Merge sort and Quick sort are classic examples of sorting algorithms that use this technique

Design technique: Divide-and-conquer

CSE 373 AU 18 26

Graph Review
Graph Definitions/Vocabulary
- Vertices, Edges
- Directed/undirected
- Weighted
- Etc…

Graph Traversals
- Breadth First Search
- Depth First Search

Finding Shortest Path
- Dijkstra’s

Topological Sort, Strongly connected components

Minimum Spanning Trees
- Primm’s
- Kruskal’s

Disjoint Sets
- Implementing Kruskal’s

CSE 373 AU 18 27

Strongly Connected Components

Connected [Undirected] Graphs
Connected graph – a graph where every vertex is
connected to every other vertex via some path. It
is not required for every vertex to have an edge to
every other vertex

There exists some way to get from each vertex to
every other vertex

CSE 373 AU 18 29

Sansa

Robb

Bran

Arya

Rickon

Jon

Dany

Connected Component – a subgraph in
which any two vertices are connected via
some path, but is connected to no
additional vertices in the supergraph
- There exists some way to get from each vertex

within the connected component to every other
vertex in the connected component

- A vertex with no edges is itself a connected
component

Viserys

Strongly Connected Components

Note: the direction of the edges matters!

CSE 373 AU 18 30

A subgraph C such that every pair of vertices in C is connected via
some path in both directions, and there is no other vertex which is
connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E

Strongly Connected Components Problem

CSE 373 AU 18 31

Given: A directed graph G
Find: The strongly connected components of G

Strongly Connected Components Problem

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

SCC Algorithm

Ok. How do we make a computer do this?

You could:

- run a [B/D]FS from every vertex,

- For each vertex record what other vertices it can get to

- and figure it out from there.

But you can do better. There’s actually an O(|V|+|E|) algorithm!

I only want you to remember two things about the algorithm:

- It is an application of depth first search.

- It runs in linear time

The problem with running a [B/D]FS from every vertex is you recompute a lot of information.

The time you are popped off the stack in DFS contains a “smart” ordering to do a second DFS where you

don’t need to recompute that information.

CSE 373 AU 18 32

Why Find SCCs?
Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
- Have a vertex for each of the strongly connected components
- Add an edge from component 1 to component 2 if there is an edge from a vertex inside 1 to one inside 2.

CSE 373 AU 18 33

D

C F

B EA K

J

1

3 4

2

Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the original graph.
- I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get from 1 to 3 in H.

CSE 373 AU 18 34

D

C F

B EA K

J

1

3 4

2

Why Must H Be a DAG?
H is always a DAG (do you see why?).

CSE 373 AU 18 35

Takeaways
Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at least as long.

You should think of these as “almost free” preprocessing of your graph.
- Your other graph algorithms only need to work on

- topologically sorted graphs and
- strongly connected graphs.

CSE 373 AU 18 36

CSE 373 AU 18 37

Recall that in insertion sort, the algorithm does a linear search to find the position in the sorted
subarray where the current element should be inserted. Suppose you use a binary search instead
of the linear search to find that position, what would be the worst-case tight big-O time
complexity of the sort? Briefly justify your answer.

Practice exam Q5

CSE 373 AU 18 38

Recall that in insertion sort, the algorithm does a linear search to find the position in the sorted
subarray where the current element should be inserted. Suppose you use a binary search instead
of the linear search to find that position, what would be the worst-case tight big-O time
complexity of the sort? Briefly justify your answer.

Solution: O(n^2)Because even if we find the insertion index quickly (in O (log n) time), we still
need to shift all the elements, which takes O (n) time, so the time complexity still remains as
O(n^2).

Practice exam Q5

CSE 373 AU 18 39

Suppose you are given a source code and you need to figure out the order in which to compile
the files. Explain how you would solve this problem? State the runtime of your solution.

Practice exam Q6

CSE 373 AU 18 40

Suppose you are given a source code and you need to figure out the order in which to compile
the files. Explain how you would solve this problem? State the runtime of your solution.

Solution: Represent the source code files as a directed unweighted graph, where each vertex is a
file and an edge represents dependency, i.e., if file A imports file B, there is an edge from B to A.

Run topological sort, and use one of the topological orderings to compile files.

Practice exam Q6

CSE 373 AU 18 41

Frodo and Sam are on their way to Mordor to destroy the ring, and along their path they have to
pass through several human villages on their way, some of which are now deserted and likely Orc
territory. They learn that there are some paths that are being heavily guarded by Orcs, and they
want to avoid those paths at all costs. Friendly spies tell Frodo and Sam that they should avoid
the road between two deserted villages, as it is more likely be monitored by Orcs.

Practice exam Q7

CSE 373 AU 18 42

Frodo and Sam are on their way to Mordor to destroy the ring, and along their path they have to
pass through several human villages on their way, some of which are now deserted and likely Orc
territory. They learn that there are some paths that are being heavily guarded by Orcs, and they
want to avoid those paths at all costs. Friendly spies tell Frodo and Sam that they should avoid
the road between two deserted villages, as it is more likely be monitored by Orcs.

Solution:
Run BFS, identify all unsafe edges, and then remove them.

Run Dijkstra’s to find the shortest path.

Practice exam Q7

CSE 373 AU 18 43

P vs. NP review slides

Decision Problems

Let’s go back to dividing problems into solvable/not solvable.
For today, we’re going to talk about decision problems.
Problems that have a “yes” or “no” answer.

Why?
Theory reasons (ask me later).
But it’s not too bad
- most problems can be rephrased as very similar decision problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most !?

CSE 373 - 18AU 45

P

The set of all decision problems that have an algorithm that runs in
time ! "# for some constant $.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”
A set of problems that can be solved under some limitations (e.g. with some
amount of memory or in some amount of time).

CSE 373 - 18AU 46

P vs. NP

Claim: P is a subset of NP, i.e. every problem in P is also in NP
(do you see why?)

The set of all decision problems such that if the answer is YES, there is
a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that runs in
time ! "# for some constant $.

P (stands for “Polynomial”)

CSE 373 - 18AU 47

NP-Complete

Let’s say we want to prove that some problem in NP needs exponential time
(i.e. that P is not equal to NP).
Ideally we’d start with a really hard problem in NP.

What is the hardest problem in NP?
What does it mean to be a hard problem?

We say that a problem B is “NP-complete” if B is in NP and
for all problems A in NP, A reduces to B.

NP-complete

CSE 373 - 18AU 48

