CSE 373 Section Handout #5

1. Consider inserting data with integer keys 34, 16, 45, 53, 6, 29, 37, 78, and 1 in the given order
into a table of size 9 where the hashing function is h(k) = k % 11. Show how you would insert
these values into the table using Linear Probing, Quadratic Probing, and Separate Chaining:

Linear Probing Quadratic Probing Separate Chaining
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
10 10 10

2. Consider the following table which inserts values using double-hashing with a primary hash
function h(k) =k % 10, and a double hash function g(k) =7 - (k % 7):

a. Insert the following values 21, 36, 26, 11, 6 into the hash table using the above hashing
method.

b. Give a single integer that, when we attempt to insert it the table using the above hashing
method after inserting the previous values from part a, results in an infinite loop.

c. Is there any way we can avoid double-hashing resulting in an infinite loop? Explain your
answer.

3. Write pseudocode for a rehash method for your TextAssociator HashTable from HW3. This
method, inside the TextAssociator. java class, should be called when the load factor gets
too large (A >= 1), and should rehash and reinsert every element inside your TextAssociator’s
table field into a new, larger table. This pseudocode is similar to any other rehash pseudocode
for a HashTable using separate chaining for collision resolution.

4. What effect does the load factor have on the runtime of insert? For each of the following
collision resolution schemes, give the worst case asymptotic runtime of insert for the given load
factor:

=0 0.5<i<l >=1

Linear Probing

Quadratic probing

Separate Chaining
where chains are
linked lists

Separate Chaining
where chains are
AVLTrees

5. Consider the following class (haha) that doesn’t adequately protect its data. Provide client code
that could cause a NullPointerException (when you attempt to call a method on a null object).

public class Student {
private String name;

public Student(String name) { setName(name); }
public void setName(name) { this.name = name; 3}

public boolean equals(Student other) {
return this.name.equals(other.name);

by

public class Classroom {
private List<Student> students;

// make a new classroom with the given students
public Classroom((List<Student> classList) {
if (classList == null) {
throw new IllegalArgumentException(“classlist is null”);

}

// make sure we don’t just copy the reference (students = classlList)
students = new ArraylList<Student>();
for (Student s : classlList) {
if (s == null || s.name == null) {
throw new IllegalArgumentException(“student is null”);

3
students.add(s);

}
public List<Student> getStudents() { return students; }

// assume a isn’t null
public boolean hasStudent(Student a) {
for (Student b : students) {
if (b.equals(a)) {
return true;
}
}

return false;

