CSE 373: Data Structures & Algorithms
Spanning Trees and Minimum Spanning Trees

Riley Porter
Winter 2017
Course Logistics

• HW4 due tonight
• HW5 out tomorrow (more graphs!)
 – coding: Dijkstra’s shortest path algorithm
 – written: lots of practice with BFS, DFS, Topological Sort, and Spanning Trees (today!)

• Midterm regrades due by the end of this week
Problem Statement

Given a *connected* undirected graph \(G = (V, E) \), find a minimal subset of edges such that \(G \) is still connected

– A graph \(G_2 = (V, E_2) \) such that \(G_2 \) is connected and removing any edge from \(E_2 \) makes \(G_2 \) disconnected
Observations

1. Problem not defined if original graph not connected. Therefore, we know $|E| \geq |V|-1$

2. Any solution to this problem is a tree
 – Recall a tree does not need a root; just means acyclic
 – For any cycle, could remove an edge and still be connected

3. Solution not unique unless original graph was already a tree

4. A tree with $|V|$ nodes has $|V|-1$ edges
 – So every solution to the spanning tree problem has $|V|-1$ edges
Motivation

A spanning tree connects all the nodes with as few edges as possible.

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost.

• Example: Electrical wiring for a house or clock wires on a chip.
• Example: A road network if you cared about asphalt cost rather than travel time.

This is the minimum spanning tree problem.
– Will do that next, after intuition from the simpler case.
Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle
Spanning tree via DFS

```java
spanning_tree(Graph G) {
    for each node v:
        v.marked = false
        dfs(someRandomStartNode)
}
dfs(Vertex a) {  // recursive DFS
    a.marked = true
    for each b adjacent to a:
        if(!b.marked) {
            add(a,b) to output
            dfs(b)
        }
}
```

Correctness: DFS reaches each node in connected graph. We add one edge to connect it to the already visited nodes. Order affects result, not correctness. Runtime: $O(|E|)$
Example

dfs(1)

Output:
Example

dfs(1)

Pending Callstack:
 dfs(2)
 dfs(5)
 dfs(6)

Output:
Example

dfs(2)

Pending Callstack:
 dfs(7)
 dfs(3)
 dfs(5)
 dfs(6)

Output: (1,2)
Example

dfs(7)

Pending Callstack:
 dfs(5)
 dfs(4)
 dfs(3)
 dfs(5)
 dfs(6)

Output: (1,2), (2,7)
Example

dfs(5)

Pending

Callstack:
dfs(4)
dfs(6)
dfs(4)
dfs(3)
dfs(6)

Output: (1,2), (2,7), (7,5)
Example

dfs(4)

Pending

Callstack:
 - dfs(3)
 - dfs(6)
 - dfs(3)

Output: (1,2), (2,7), (7,5), (5,4)
Example

dfs(3)

Pending

Callstack:

dfs(6)

Output: (1,2), (2,7), (7,5), (5,4), (4,3)
dfs(6)

Pending Callstack:

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Example

Bubble up the recursive callstack.

Ignore each edge that would have been considered, but now is adjacent to a vertex already marked true.

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
- The graph is connected, so we reach all vertices

Efficiency:
- Depends on how quickly you can detect cycles
- Reconsider after the example
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output:
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)
Example

Edges in some arbitrary order:

\((1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)\)

Output: \((1,2), (3,4)\)
Example

Edges in some arbitrary order:

$(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)$

Output: $(1,2), (3,4), (5,6), \ldots$
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3),
(4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we have $|V|-1$ edges
Cycle Detection

• To decide if an edge could form a cycle is $O(|V|)$ because we may need to traverse all edges already in the output

• So overall algorithm would be $O(|V||E|)$

• But there is a faster way we know: use union-find!
 – Initially, each item is in its own 1-element set
 – Union sets when we add an edge that connects them
 – Stop when we have one set
Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: \(u \) and \(v \) are connected in output-so-far iff \(u \) and \(v \) in the same set

• Initially, each node is in its own set
• When processing edge \((u, v)\):
 – If \(\text{find}(u) \) equals \(\text{find}(v) \), then do not add the edge
 – Else add the edge and \(\text{union}(\text{find}(u), \text{find}(v)) \)
 – \(O(|E|) \) operations that are almost \(O(1) \) amortized
Summary So Far

The **spanning-tree problem**

- Add nodes to partial tree approach is $O(|E|)$
- Add acyclic edges approach is *almost* $O(|E|)$
 - Using union-find

But really want to solve the **minimum-spanning-tree problem**

- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be $O(|E| \log |V|)$
MST: Getting to the Point

Algorithm #1: Prim’s Algorithm
Find Minimum Spanning Trees like Dijkstra’s Algorithm finds Shortest-Path.

– Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack

Algorithm #2: Kruskal’s Algorithm
finds Minimum Spanning Trees exactly like our 2nd greedy approach to spanning tree, but process edges in cost order instead of random order
Prim’s Algorithm Idea

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. *Pick the edge with the smallest weight that connects “known” to “unknown.”*

Recall Dijkstra “picked edge with closest known distance to source”
- That is not what we want here
- Otherwise identical (!)
The Algorithm

1. For each node v, set $v.cost = \infty$ and $v.known = false$
2. Choose any node v
 a) Mark v as known
 b) For each edge (v, u) with weight w, set $u.cost = w$ and $u.prev = v$
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known and add $(v, v.prev)$ to output
 c) For each edge (v, u) with weight w,

 if($w < u.cost$) {
 $u.cost = w$;
 $u.prev = v$;
 }

Example

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Example

![Graph with vertices and edges labeled with costs]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
Example

![Graph with vertices and edges labeled with costs and a table of vertex information]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>

CSE373: Data Structures & Algorithms
Example

![Graph with vertices and edges labeled with costs and known status]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>
Example

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
```
Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Example

![Graph with vertices and edges labeled with costs]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Prim’s Analysis

• Correctness
 – A bit tricky: Intuitively similar to Dijkstra
 – Proof by contradiction. If there is an edge that is smaller connecting unknown node v to the known tree, we would have found it from the known cloud or we would be choosing it (true at every step/node v).

• Run-time
 – Same as Dijkstra
 – $O(|V| \log |V| + |E| \log |V|)$ using a priority queue
 • Costs/priorities are just edge-costs, not path-costs
Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.
 – But now consider the edges in order by weight

Runtime (using sorting):
 – Sort edges: \(O(|E| \log |E|) \) (sorting is next course topic)
 – Iterate through edges using union-find for cycle detection almost \(O(|E|) \)

Somewhat better (using a priority queue):
 – Floyd’s algorithm to build min-heap with edges \(O(|E|) \)
 – Iterate through edges, using union-find for cycle detection and \texttt{deleteMin} to get next edge \(O(|E| \log |E|) \)
 – Not better \textit{worst-case} asymptotically, but often stop long before considering all edges and the up front cost is cheaper
Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1
 - Consider next smallest edge \((u, v)\)
 - if \(\text{find}(u)\) and \(\text{find}(v)\) indicates \(u\) and \(v\) are in different sets
 - output \((u, v)\)
 - \(\text{union}(\text{find}(u), \text{find}(v))\)

Recall invariant:
\(u\) and \(v\) in same set iff connected in output-so-far
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: \((A, D), (C, D), (B, E), (D, E)\)
2: \((A, B), (C, F), (A, C)\)
3: \((E, G)\)
5: \((D, G), (B, D)\)
6: \((D, F)\)
10: \((F, G)\)

Output: \((A, D), (C, D)\)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: \((A,D), (C,D), (B,E), (D,E)\)
2: \((A,B), (C,F), (A,C)\)
3: \((E,G)\)
5: \((D,G), (B,D)\)
6: \((D,F)\)
10: \((F,G)\)

Output: \((A,D), (C,D), (B,E)\)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: \((A, D), (C, D), (B, E), (D, E)\)
2: \((A, B), (C, F), (A, C)\)
3: \((E, G)\)
5: \((D, G), (B, D)\)
6: \((D, F)\)
10: \((F, G)\)

Output: \((A, D), (C, D), (B, E), (D, E), (C, F), (E, G)\)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it \(T_K \).

Suppose \(T_K \) is not minimum:

- Pick another spanning tree \(T_{\text{min}} \) with lower cost than \(T_K \).
- Pick the smallest edge \(e_1 = (u, v) \) in \(T_K \) that is not in \(T_{\text{min}} \).
- \(T_{\text{min}} \) already has a path \(p \) in \(T_{\text{min}} \) from \(u \) to \(v \).
 - Adding \(e_1 \) to \(T_{\text{min}} \) will create a cycle in \(T_{\text{min}} \).

Pick an edge \(e_2 \) in \(p \) that Kruskal’s algorithm considered after adding \(e_1 \) (must exist: \(u \) and \(v \) unconnected when \(e_1 \) considered):

- \(\Rightarrow \) cost\((e_2) \geq\) cost\((e_1)\)
- \(\Rightarrow \) can replace \(e_2 \) with \(e_1 \) in \(T_{\text{min}} \) without increasing cost!

Keep doing this until \(T_{\text{min}} \) is identical to \(T_K \):

- \(\Rightarrow \) \(T_K \) must also be minimal – contradiction!
Today’s Takeaways

• Understand Spanning Trees and some greedy algorithms (graph traversal + disjoint sets) for finding them

• Understand Minimum Spanning Trees, and the two main algorithms for finding them:
 – Prim’s: like Dijkstra’s, but pick the least cost edge
 – Kruskal’s: