CSE 373: Data Structures and Algorithms
More Asymptotic Analysis; More Heaps

Riley Porter
Winter 2017
Course Logistics

• HW 1 posted. Due next Tuesday, January 17th at 11 pm. Dropbox not on catalyst, will be through the Canvas for the course.

• TA office hour rooms and times are all posted and finalized. Please go visit the TAs so they aren’t lonely.

• Java Review Session materials from yesterday posted in the Announcements section of the website.
Review from last time (what did we learn?)

• Analyze algorithms without specific implementations through space and time (what we focused on).

• We only care about asymptotic runtimes, we want to know what will happen to the runtime proportionally as the size of input increases.

• Big-O is an upper bound and you can prove that a runtime has a Big-O upper bound by computing two values: c and n_0.
Review: Formally Big-O

Definition:

\[g(n) \text{ is in } O(f(n)) \text{ if there exist constants } c \text{ and } n_0 \text{ such that } g(n) \leq c f(n) \text{ for all } n \geq n_0 \]

• To show \(g(n) \text{ is in } O(f(n)) \), pick a \(c \) large enough to “cover the constant factors” and \(n_0 \) large enough to “cover the lower-order terms”
 – Example: Let \(g(n) = 3n^2 + 17 \) and \(f(n) = n^2 \)
 \[c=5 \text{ and } n_0=10 \text{ is more than good enough} \]

• This is “less than or equal to”
 – So \(3n^2 + 17 \) is also \(O(n^5) \) and \(O(2^n) \) etc.
Big-O: Common Names

$O(1)$ constant (same as $O(k)$ for constant k)

$O(\log n)$ logarithmic

$O(n)$ linear

$O(n \log n)$ “$n \log n$”

$O(n^2)$ quadratic

$O(n^3)$ cubic

$O(n^k)$ polynomial (where is k is any constant: linear, quadratic and cubic all fit here too.)

$O(k^n)$ exponential (where k is any constant > 1)

Note: “exponential” does not mean “grows really fast”, it means “grows at rate proportional to k^n for some $k>1$”. Example: a savings account accrues interest exponentially ($k=1.01$).
More Asymptotic Notation

- **Big-O Upper bound:** $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $g(n)$ is in $O(f(n))$ if there exist constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$

- **Big-Omega Lower bound:** $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
 - $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \geq c f(n)$ for all $n \geq n_0$

- **Big-Theta Tight bound:** $\Theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
 - Intersection of $O(f(n))$ and $\Omega(f(n))$ (use different c values)
A Note on Big-O Terms

• A common error is to say $O(\text{ function })$ when you mean $\theta(\text{ function }):$
 – People often say Big-O to mean a tight bound
 – Say we have $f(n)=n$; we could say $f(n)$ is in $O(n)$, which is true, but only conveys the upper-bound
 – Since $f(n)=n$ is also $O(n^5)$, it’s tempting to say “this algorithm is exactly $O(n)$”
 – Somewhat incomplete; instead say it is $\theta(n)$
 – That means that it is not, for example $O(\log n)$
What We’re Analyzing

• The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm

• Example: True statements about binary-search algorithm
 – Common: θ(log n) running-time in the worst-case
 – Less common: θ(1) in the best-case (item is in the middle)
 – Less common (but very good to know): the find-in-sorted array problem is Ω(log n) in the worst-case

• No algorithm can do better (without parallelism)
Intuition / Math on $O(\log N)$

• If you’re dividing your input in half (or any other constant) each iteration of an algorithm, that’s $O(\log N)$.

• Binary Search Example:

If you divide your input in half each time and discard half the values, to figure out the worst-case runtime you need to figure out how many “halves” you have in your input. So you’re solving:

$$\frac{N}{2^x} = 1$$

where N is size of input, X is “number of halves”, because 1 is the desired number of elements you’re trying to get to.

$$\log(2^x) = x \log(2) = \log(N)$$

$$X = \log(N) / \log(2)$$

$$X = \log_2(N)$$
Other things to analyze

• Remember we can often use space to gain time
• Average case
 – Sometimes only if you assume something about the probability distribution of inputs
 – Usually the way we think about Hashing
 • Will discuss in two weeks
 – Sometimes uses randomization in the algorithm
 • Will see an example with sorting
 – Sometimes an amortized guarantee
 • Average time over any sequence of operations
 • Will discuss next week
Usually asymptotic is valuable

• Asymptotic complexity focuses on behavior for large \(n \) and is independent of any computer / coding trick

• But you can “abuse” it to be misled about trade-offs

• Example: \(n^{1/10} \) vs. \(\log n \)
 – Asymptotically \(n^{1/10} \) grows more quickly
 – But the “cross-over” point is around \(5 \times 10^{17} \)
 – So if you have input size less than \(2^{58} \), prefer \(n^{1/10} \)

• For small \(n \), an algorithm with worse asymptotic complexity might be faster
 – Here the constant factors can matter, if you care about performance for small \(n \)
Summary of Asymptotic Analysis

Analysis can be about:

• The problem or the algorithm (usually algorithm)
• Time or space (usually time)
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper)

• The most common thing we will do is give an O upper bound to the worst-case running time of an algorithm.
Let’s use our new skills!

Here’s a picture of a kitten as a segue to analyzing an ADT
Analysis of Priority Queue ADT

Let’s compare some options for implementing Priority Queues. All runtimes are worst-case, but assume arrays have room for new elements. We’ll look at the binary search tree operations and runtimes more on Friday.

<table>
<thead>
<tr>
<th>data structure</th>
<th>insert</th>
<th>deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end $O(1)$</td>
<td>search $O(n)$</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front $O(1)$</td>
<td>search $O(n)$</td>
</tr>
<tr>
<td>sorted array</td>
<td>search / shift $O(n)$</td>
<td>stored in reverse $O(1)$</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place $O(n)$</td>
<td>remove at front $O(1)$</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place $O(n)$</td>
<td>leftmost $O(n)$</td>
</tr>
<tr>
<td>heaps</td>
<td>???</td>
<td>???</td>
</tr>
</tbody>
</table>
Review of last time: Heaps

Heaps follow the following two properties:

• **Structure property:** A *complete* binary tree
• **Heap order property:** The priority of the children is always a greater value than the parents (greater value means less priority / less importance)
Array Representation of Heaps (or any tree structure)

Starting at node \(i \)

left child: \(i \times 2 \)
right child: \(i \times 2 + 1 \)
parent: \(i / 2 \)

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i = 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Winter 2017
Judging the array implementation

Positives:
• Non-data space is minimized: just index 0 and unused space on right
 – In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
 – Array would waste more space if tree were not complete

• Multiplying and dividing by 2 is very fast (shift operations in hardware)
• Last used position is just index size

Negatives:
• Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
This pseudocode uses ints. Since not all data types are comparable, you could instead have data nodes with priorities.
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Winter 2017
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>32</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Winter 2017
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>32</th>
<th>16</th>
<th>69</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Winter 2017
Example

1. insert: 16, 32, 4, 69, 105, 43, 2

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>32</th>
<th>16</th>
<th>69</th>
<th>105</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Winter 2017
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
1. insert: 16, 32, 4, 69, 105, 43, 2
Example

1. insert: 16, 32, 4, 69, 105, 43, 2
Pseudocode: deleteMin

```c
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
        (1, arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

```c
int percolateDown(int hole, int val){
    while(2*hole <= size) {
        left = 2*hole;
        right = left + 1;
        if(arr[left] < arr[right]
            || right > size)
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```

```
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>80</th>
<th>40</th>
<th>60</th>
<th>85</th>
<th>99</th>
<th>700</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Winter 2017
Example

1. deleteMin

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>32</td>
<td>4</td>
<td>69</td>
<td>105</td>
<td>43</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

```
2
 /   \
32   4
   /   /
 69 105 43 16
```
Example

1. deleteMin

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>32</th>
<th>4</th>
<th>69</th>
<th>105</th>
<th>43</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
```

![Binary tree representation of the deleteMin operation](image)
Example

1. deleteMin

<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>32</th>
<th>4</th>
<th>69</th>
<th>105</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Winter 2017
Example

1. deleteMin

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>32</th>
<th>16</th>
<th>69</th>
<th>105</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Winter 2017
Example

1. `deleteMin`

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>16</td>
<td>69</td>
<td>105</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
  4
 / \
32 16
 /   \
69   43
```

Winter 2017
DeleteMin: Run Time Analysis

- We will **percolate down** at most (height of heap) times
 - So run time is $O($height of heap$)$

- A heap is a complete binary tree

- Height of a complete binary tree of n nodes?
 - height = $\lceil \log_2(n) \rceil$

- Run time of `deleteMin` is $O(\log n)$
Insert: Run Time Analysis

• Same as `deleteMin` worst-case time proportional to tree height $O(\log n)$

• `deleteMin` needs the “last used” complete-tree position and `insert` needs the “next to use” complete-tree position
 – If “keep a reference to there” then `insert` and `deleteMin` have to adjust that reference: $O(\log n)$ in worst case
 – Could calculate how to find it in $O(\log n)$ from the root given the size of the heap
Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value. *Remember lower priority value is *better* (higher in tree).
 - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value.
 - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue.
 - Percolate up to top and removeMin

- **buildHeap**: given a list of elements, construct a heap with those values.
 - Floyd’s Method will be seen on Friday
Revisit: Analysis of Priority Queue ADT

Let’s compare some options for implementing Priority Queues. All runtimes worst-case, but assume arrays have room for new elements. We’ll look at the binary search tree operations and runtimes more on Friday.

<table>
<thead>
<tr>
<th>data structure</th>
<th>insert</th>
<th>deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end</td>
<td>search O(n)</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front</td>
<td>search O(n)</td>
</tr>
<tr>
<td>sorted array</td>
<td>search / shift</td>
<td>stored in reverse</td>
</tr>
<tr>
<td></td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place</td>
<td>remove at front</td>
</tr>
<tr>
<td></td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place</td>
<td>leftmost O(n)</td>
</tr>
<tr>
<td></td>
<td>O(logn)</td>
<td>O(logn)</td>
</tr>
<tr>
<td>heaps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Today’s Takeaways

• Understand Big-O, Big-theta, and Big-Omega definitions and how to find them for a given runtime.

• Understand how Heap operations are implemented with the array representation and be able to analyze their runtimes.