CSE 373: Data Structures & Algorithms
More AVL Trees

Riley Porter
Winter 2017
Course Logistics

• HW2 spec had a small typo

• Weekly summaries out soon, hopefully by tomorrow (sorry I got sick this weekend)
Review: AVL Trees

1. Values are correct: it’s a BST

2. Structure is correct: AVL balance condition. Left and right subtrees of every node have heights differing by at most 1

Result: Worst-case depth is $O(\log n)$
Review: AVL Operations

If we have an AVL tree, the height is $O(\log n)$, so find is $O(\log n)$

Maintenance: as we insert and delete elements, we need to keep the tree in balance. We do that with the following steps:

1. Track balance
2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
Yep!

How about after insert(30)?
No, now the Balance of 15 is off

Perform a rotation of the subtree
15 -> 20 -> 30
Review: AVL Insert

1. Insert the new node
2. Find and fix imbalances. We “fix” imbalances by doing rotation(s).
Case #1: Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property. To maintain balance, we fix the tree with a rotation.
Fix: Apply “Single Rotation”

- **Single rotation**: The basic operation we’ll use to rebalance
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child (always okay in a BST!)
 - Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
New parent height is now the old parent’s height before insert
The example generalized

- Node imbalanced due to insertion *somewhere* in **left-left grandchild** that causes an increasing height
 - 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make a imbalanced
The general left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild
 - 1 of 4 possible imbalance causes (other three coming)
- So we rotate at \(a \), using BST facts: \(X < b < Y < a < Z \)

- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced
Why does this work: values

• Let’s look at the BST property. Identify all values less than and greater than ‘a’.
Why does this work: values

• Let’s look at the BST property. All values < a are blue. All values > a are orange. They still hold for the BST order property after rotation.
Why does this work: values

Before rotation:
- $b < a$
- $X < a$
- $Y < a$
- $Z > a$

After rotation:
- $b < a$
- $X < a$
- $Y < a$
- $Z > a$
Why does this work: heights

- After inserting the new red node, identify the heights of each subtree.
Another example: insert(16)

Where is the imbalance?
Another example: \textit{insert}(16)

Where is the imbalance?

22
Another example: \texttt{insert(16)}

What are the generalized subtrees?
Another example: insert(16)
Case #2: right-right generalized

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but different code
Rotations so far

Cases we’ve covered:

Cases we haven’t covered:
Case 3 & 4: left-right and right-left

```
<table>
<thead>
<tr>
<th>1</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Insert(1)
Insert(6)
Insert(3)

Is there a single rotation that can fix either tree?

```
<table>
<thead>
<tr>
<th>6</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Insert(6)
Insert(1)
Insert(3)
Wrong rotation #1:

Unfortunately, single rotations are not enough for insertions in the **left-right** subtree or the **right-left** subtree.

Simple example: insert(1), insert(6), insert(3)

- First wrong idea: single rotation like we did for left-left
Wrong rotation #2:
Unfortunately, single rotations are not enough for insertions in the **left-right** subtree or the **right-left** subtree

Simple example: \texttt{insert(1), insert(6), insert(3)}
- **Second wrong idea**: single rotation on the child of the unbalanced node
Sometimes two wrongs make a right

• First idea violated the BST property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the second, it works! (And not just for this example.)
• Double rotation:
 1. Rotate problematic child and grandchild
 2. Then rotate between self and new child
The general right-left case

Rotation 1:
- b.left = c.right
- c.right = b
- a.right = c

Rotation 2:
- a.right = c.left
- c.left = a
- root = c
Keeping track of values

First rotation (around node ‘b’):
- Subtrees < ‘b’ in blue
- Subtrees > ‘b’ in orange
Keeping track of values 2

Second rotation (around node ‘a’):
• Subtrees < ‘a’ in blue
• Subtrees > ‘a’ in orange
The last case: left-right

• Mirror image of right-left
 – Again, no new concepts, only new code to write
Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert.
 - So no ancestor in the tree will need rebalancing.
- Does not have to be implemented as two rotations; can just do:

 1) Move c to grandparent’s position
 2) Put a, b, X, U, V, and Z in the only legal positions for a BST

Easier to remember than you may think:

1) Move c to grandparent’s position
2) Put a, b, X, U, V, and Z in the only legal positions for a BST
Insert, summarized

• Insert as in a BST
• Check back up path for imbalance, which will be 1 of 4 cases:
 – Node’s left-left grandchild is too tall (left-left single rotation)
 – Node’s left-right grandchild is too tall (left-right double rotation)
 – Node’s right-left grandchild is too tall (right-left double rotation)
 – Node’s right-right grandchild is too tall (right-right double rotation)
• Only one case occurs because tree was balanced before insert
• After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 – So all ancestors are now balanced
Efficiency

• Worst-case complexity of **find**: $O(\log n)$
 – Tree is balanced

• Worst-case complexity of **insert**: $O(\log n)$
 – Tree starts balanced
 – A rotation is $O(1)$ and there’s an $O(\log n)$ path to root
 – (Same complexity even without one-rotation-is-enough fact)
 – Tree ends balanced

• Worst-case complexity of **buildTree**: $O(n \log n)$

 Takes some more rotation action to handle **delete**…
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are *always* balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. Most large searches are done in database-like systems on disk and use other structures (e.g., *B*-trees, a data structure in the text)
5. If *amortized* (later, I promise) logarithmic time is enough, use splay trees (also in text)
Today’s Takeaways

• AVL trees:
 – understand the AVL balance condition
 – be able to identify AVL trees
 – intuition on why the height is $O(\log N)$
 – understand AVL inserts and rotations:
 • single rotations
 • double rotations
 – understand complexity of AVL operations