Today: More sorting algorithms!

- Merge sort analysis
- Quicksort
- Bucket sort
- Radix sort
Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts
 • Think recursion
 • Or parallelism

3. Combine solution of parts to produce overall solution

Two great sorting methods are fundamentally divide-and-conquer (Merge Sort & Quicksort)
Merge Sort

Merge Sort: repeatedly...
• Sort the left half of the elements
• Sort the right half of the elements
• Merge the two sorted halves into a sorted whole

To sort array from position lo to position hi:
• If range is 1 element long, it is already sorted!
• Else:
 • Sort from lo to (hi+lo)/2
 • Sort from (hi+lo)/2 to hi
 • Merge the two halves together
Linked lists and big data

We defined sorting over an array, but sometimes you want to sort linked lists

One approach:
- Convert to array:
- Sort:
- Convert back to list:

Merge sort works very nicely on linked lists directly
- Heapsort and quicksort do not
- Insertion sort and selection sort do but they’re slower

Merge sort is also the sort of choice for external sorting
- Linear merges minimize disk accesses
- And can leverage multiple disks to get streaming accesses
Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time and space:

To sort n elements, we:
- Return immediately if $n=1$
- Else do 2 subproblems of size $n/2$ and then an $O(n)$ merge

Recurrence relation:

$$T(1) = c_1$$
$$T(n) = c_2 n + 2T(n/2)$$

$O(n \log n)$
Analysis intuitively

This recurrence is common, you just “know” it’s $O(n \log n)$

Merge sort is relatively easy to intuit (best, worst, and average):
• The recursion “tree” will have height $\log n$
• At each level we do a total amount of merging equal to n
Analysis more formally
(One of the recurrence classics)

For simplicity, ignore constants (let constants be)

\[T(1) = 1 \]

\[T(n) = 2T(n/2) + n \]

\[= 2(2T(n/4) + n/2) + n \]

\[= 4T(n/4) + 2n \]

\[= 4(2T(n/8) + n/4) + 2n \]

\[= 8T(n/8) + 3n \]

....

\[= 2^kT(n/2^k) + kn \]

We will continue to recurse until we reach the base case, i.e. \(T(1) \) for \(T(1) \), \(n/2^k = 1 \), i.e., \(\log n = k \)

So the total amount of work is \(2^kT(n/2^k) + kn = 2^{\log n}T(1) + n \log n = n + n \log n = O(n \log n) \)
Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. **Merge Sort:**
 - Sort the left half of the elements (recursively)
 - Sort the right half of the elements (recursively)
 - Merge the two sorted halves into a sorted whole

2. **Quicksort:**
 - Pick a “pivot” element
 - Divide elements into “less-than pivot” and “greater-than pivot”
 - Sort the two divisions (recursively on each)
 - Answer is “sorted-less-than”, followed by “pivot”, followed by ”sorted-greater-than”
Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot

3. Recursively sort A and C

4. The final answer is A-B-C
Real-world example demo time!
Think in Terms of Sets

1. Select pivot value
2. Partition S
3. Quicksort(S₁) and Quicksort(S₂)
4. Presto! S is sorted

[Weiss]
Example, Showing Recursion

Divide
Divide
Divide
1 Element
Conquer
Conquer
Conquer

8 2 9 4 5 3 1 6

2 4 3 1

5

2 1

3

4

6 8 9

1 2 3 4

8 9 6

1 2

3

4

6 8 9

1 2 3 4 5 6 8 9
Details

Have not yet explained:

• How to pick the pivot element
 • Any choice is correct: data will end up sorted
 • But as analysis will show, want the two partitions to be about equal size

• How to implement partitioning
 • In linear time
 • In place
Pivots

• Best pivot?
 - median
 • Halve each time
 • $O(n \log n)$

• Worst pivot?
 • Greatest/least element
 • Partition of size $n - 1$
 • $O(n^2)$
Potential pivot rules

While sorting *arr* from *lo* to *hi−1* ...

- **Pick** *arr[lo]* or *arr[hi−1]*
 - Fast, but worst-case occurs with mostly sorted input

- **Pick random element in the range**
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - Still probably the most elegant approach

- **Median of 3, e.g.,** *arr[lo], arr[hi−1], arr[(hi+lo)/2]*
 - Common heuristic that tends to work well
Partitioning

Conceptually simple, but hardest part to code up correctly
• After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):
1. Swap pivot with \(arr[lo] \)
2. Use two fingers \(i \) and \(j \), starting at \(lo+1 \) and \(hi-1 \)
3. while \((i < j) \)
 if \((arr[j] > pivot) j-- \)
 else if \((arr[i] < pivot) i++ \)
 else swap \(arr[i] \) with \(arr[j] \)
4. Swap pivot with \(arr[i] \)

*skip step 4 if pivot ends up being least element
Example

• Step one: pick pivot as median of 3
 • \(lo = 0, hi = 10\)

0 1 2 3 4 5 6 7 8 9
8 1 4 9 0 3 5 2 7 6

• Step two: move pivot to the \(lo\) position

0 1 2 3 4 5 6 7 8 9
6 1 4 9 0 3 5 2 7 8
Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

Often have more than one swap during partition – this is a short example
Analysis

• Best-case: Pivot is always the median
 \[T(0) = T(1) = 1 \]
 \[T(n) = 2T(\frac{n}{2}) + n \] -- linear-time partition
 Same recurrence as merge sort: \(O(n \log n) \)

• Worst-case: Pivot is always smallest or largest element
 \[T(0) = T(1) = 1 \]
 \[T(n) = T(n - 1) + n \]
 Basically same recurrence as selection sort: \(O(n^2) \)

• Average-case (e.g., with random pivot)
 • \(O(n \log n) \), not responsible for proof (in text)
Cutoffs

• For small n, all that recursion tends to cost more than doing a quadratic sort
 • Remember asymptotic complexity is for \(n \rightarrow \infty \)

• Common engineering technique: switch algorithm below a \textbf{cutoff}
 • Reasonable rule of thumb: use insertion sort for $n < 10$

• Notes:
 • Could also use a cutoff for merge sort
 • Cutoffs are also the norm with parallel algorithms
 • Switch to sequential algorithm
 • None of this affects asymptotic complexity
Cutoff pseudocode

```c
void quicksort(int[] arr, int lo, int hi)
{
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
        ...
}
```

Notice how this cuts out the vast majority of the recursive calls
 – Think of the recursive calls to quicksort as a tree
 – Trims out the bottom layers of the tree
Practice with comparison sort!

A comparison sorting algorithm is operating on an array of 8 integers. After its 4th loop or recursive call, the array looks like:

\begin{center}
\begin{tabular}{cccccccc}
4 & 8 & 11 & 15 & 42 & 29 & 18 & 37 \\
\end{tabular}
\end{center}

Which of these sorting algorithms can it be?

A) Heapsort
B) Merge sort
C) Insertion sort
D) Quicksort using Median of 3
Practice with comparison sort!

A comparison sorting algorithm is operating on an array of 8 integers. After its 4\(^{th}\) loop or recursive call, the array looks like:

\[
\begin{array}{cccccccc}
4 & 8 & 11 & 15 & 42 & 29 & 18 & 37 \\
\end{array}
\]

Which of these sorting algorithms can it be?

A) Heapsort

B) Merge sort

C) Insertion sort

D) Quicksort using Median of 3
How Fast Can We Sort?

• Heapsort & mergesort have $O(n \log n)$ worst-case running time

• Quicksort has $O(n \log n)$ average-case running time

• These bounds are all tight, actually $\Theta(n \log n)$

• Comparison sorting in general is $\Omega(n \log n)$
 • An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time
The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

- **Simple algorithms**: $O(n^2)$
 - Insertion sort
 - Selection sort
 - Shell sort
 - ...

- **Fancier algorithms**: $O(n \log n)$
 - Heap sort
 - Merge sort
 - Quick sort (avg)
 - ...

- **Comparison lower bound**: $\Omega(n \log n)$
 - Bucket sort
 - Radix sort

- **Specialized algorithms**: $O(n)$
 - External sorting

- **Handling huge data sets**

How???
- Change the model – assume more than “compare(a,b)”
Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

- Example:
 - $K=5$
 - input (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)
 - output 1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5
Analyzing Bucket Sort

• Overall: $O(n+K)$
 • Linear in n, but also linear in K
 • $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

• Good when K is smaller (or not much larger) than n
 • We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n
 • Wasted space; wasted time during linear $O(K)$ pass

• For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

- Most real lists aren’t just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in \(O(1) \) (at beginning, or keep pointer to last element)

Example: spice level; scale 1-5;
1 = mild, 5 = very spicy

Input=
- 5: Habanero
- 3: Jalapeño
- 5: Ghost pepper
- 1: Bell pepper

<table>
<thead>
<tr>
<th>count array</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bell</td>
</tr>
<tr>
<td>2</td>
<td>Jalapeño</td>
</tr>
<tr>
<td>3</td>
<td>Habanero</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ghost</td>
</tr>
</tbody>
</table>

Result: Bell, Jalapeño, Habanero, Ghost

- Easy to keep ‘stable’; Habanero still before Ghost pepper
Interactive Visualizations

Comparison Sort (including quicksort):
• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Bucket Sort:
• http://www.cs.usfca.edu/~galles/visualization/BucketSort.html
• http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Radix Sort:
• http://www.cs.usfca.edu/~galles/visualization/RadixSort.html