CSE 373: Data Structures and Algorithms

Lecture 19: Comparison Sorting Algorithms

Instructor: Lilian de Greef
Quarter: Summer 2017
Today

• Intro to sorting
• Comparison sorting
 • Insertion Sort
 • Selection Sort
 • Heap Sort
 • Merge Sort
Mini-Announcements

• Homework 4 due today

• Homework 5 coming out today, due Friday 5:00pm
 • Can get started using material covered today
 • Can complete using material covered by Monday
Sorting

Now looking at algorithms instead of data structures!
Introduction to Sorting

• Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time

• But often we know we want “all the things” in some order
 • Humans can sort, but computers can sort fast
 • Very common to need data sorted somehow
 • Alphabetical list of people
 • List of countries ordered by population
 • Search engine results by relevance
 • List store catalogue by price
 • …

• Algorithms have different asymptotic and constant-factor trade-offs
 • No single “best” sort for all scenarios
 • Knowing one way to sort just isn’t enough
More Reasons to Sort

General technique in computing:

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
- Find the k^{th} largest in constant time for any k
- Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on
- How often the data will change (and how much it will change)
- How much data there is
The main problem, stated carefully

For now, assume we have n comparable elements in an array and we want to rearrange them to be in increasing order

Input:
- An array A of data records
- A key value in each data record
- A comparison function

Effect:
- Reorganize the elements of A such that for any i and j, if $i < j$ then $A[i] < A[j]$
- (Also, A must have exactly the same data it started with)
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort
Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”
 • Sorts that do this naturally are called stable sort

3. Maybe we must not use more than $O(1)$ “auxiliary space”
 • Sorts meeting this requirement are called in-place sort

4. Maybe we can do more with elements than just compare
 • Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory
 • Use an “external” algorithm
Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

- **Simple algorithms:** $O(n^2)$
 - Insertion sort
 - Selection sort
 - Shell sort
 - …

- **Fancier algorithms:** $O(n \log n)$
 - Heap sort
 - Merge sort
 - Quick sort
 - …

- **Comparison lower bound:** $\Omega(n \log n)$

- **Specialized algorithms:** $O(n)$
 - Bucket sort
 - Radix sort

- **Handling huge data sets**

External sorting
Real-world example demo time!

Help me sort some cards!
Insertion Sort

• Idea: At step k, put the k^{th} element in the correct position among the first k elements

• Alternate way of saying this:
 • Sort first two elements
 • Now insert 3rd element in order
 • Now insert 4th element in order
 • ...

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time?
 - Best-case $O(n)$
 - Worst-case $O(n^2)$
 - “Average” case $O(n^2)$ (see text)
Selection sort

• Idea: At step \(k \), find the smallest element among the not-yet-sorted elements and put it at position \(k \)

• Alternate way of saying this:
 • Find smallest element, put it 1\(^{st} \)
 • Find next smallest element, put it 2\(^{nd} \)
 • Find next smallest element, put it 3\(^{rd} \) ...

• “Loop invariant”: when loop index is \(i \), first \(i \) elements are the \(i \) smallest elements in sorted order

• Time?
 Best-case \(\Theta (n^2) \) Worst-case \(\Theta (n^2) \) “Average” case \(\Theta (n^2) \)

\[
T(1) = 1 \\
T(n) = n + T(n-1)
\]
Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic complexity
 • Insertion-sort has better best-case complexity; preferable when input is “mostly sorted”

• Other algorithms are more efficient for large arrays that are not already almost sorted
 • Insertion sort may do well on small arrays
The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

- Simple algorithms: $O(n^2)$
 - Insertion sort
 - Selection sort
 - Shell sort

- Fancier algorithms: $O(n \log n)$
 - Heap sort
 - Merge sort
 - Quick sort (avg)
 - ...
Heap sort

• Sorting with a heap:
 • insert each arr[i], or better yet use buildHeap
 • for (i=0; i < arr.length; i++)
 arr[i] =

• Worst-case running time: $O(n \log n)$

• We have the array-to-sort and the heap
 • So this is not an in-place sort
 • There’s a trick to make it in-place...
In-place heap sort

- Treat the initial array as a heap (via `buildHeap`)
- When you delete the i^{th} element, put it at $\text{arr}[n-i]$
 - That array location isn't needed for the heap anymore!

But this reverse sorts – how would you fix that?
“AVL sort”

• We can also use a balanced tree to:
 • insert each element: total time $O(n \log n)$
 • Repeatedly deleteMin: total time $O(n \log n)$
 • Better: in-order traversal $O(n)$, but still $O(n \log n)$ overall

• Compared to heap sort
 • both are $O(n \log n)$ in worst, best, and average case
 • neither parallelizes well
 • heap sort is can be done in-place, has better constant factors

Design decision: which would you choose between Heap Sort and AVL Sort? Why?
“Hash sort”???

Nope!

Finding min item in a hashtable is $O(n)$, so this would be a slower, more complicated selection sort

already terrible
Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts
 • Think recursion
 • Or parallelism

3. Combine solution of parts to produce overall solution

Two great sorting methods are fundamentally divide-and-conquer
(Merge Sort & Quicksort)
Merge Sort

Merge Sort: recursively...

• Sort the left half of the elements
• Sort the right half of the elements
• Merge the two sorted halves into a sorted whole
Real-world example demo time!

Help me sort some cards!
Merge sort

To sort array from position lo to position hi:
- If range is 1 element long, it is already sorted!
- Else:
 - Sort from lo to $(hi+lo)/2$
 - Sort from $(hi+lo)/2$ to hi
 - Merge the two halves together

Merging takes two sorted parts and sorts everything
- $O(n)$ but requires auxiliary space...
Merge Sort: Example focused on merging

Start with: 8 2 9 4 5 3 1 6

After recursion: 2 4 8 9 1 3 5 6
(not magic 😊)

Merge:
Use 3 “fingers”
and 1 more array

(After merge, copy back to original array)
Merge Sort: Example showing recursion

```
8 2 9 4 5 3 1 6
```

```
8 2 9 4

2 8

9 4

4 9

1 3 5 6

1 2 3 4 5 6 8 9
```
One way to practice on your own time:

- Make yourself an unsorted array
- Try using one of the sorting algorithms on it
- You know you got the right end result if it comes out sorted
- Can use the same example for merge sort as the previous slide to double check in-between steps
Some details: saving a little time

• What if the final steps of our merge looked like this:

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>1</th>
<th>3</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

Main array

Auxiliary array

• Wasteful to copy to the auxiliary array just to copy back...
Some details: saving a little time

• If left-side finishes first, just stop the merge and copy back:

• If right-side finishes first, copy dregs into right then copy back
Some details: saving space and copying

Simplest / Worst:
 Use a new auxiliary array of size \((hi-lo)\) for every merge

Better:
 Use a new auxiliary array of size \(n\) for every merging stage

Better:
 Reuse same auxiliary array of size \(n\) for every merging stage

Best (but a little tricky):
 Don’t copy back – at 2\(^{nd}\), 4\(^{th}\), 6\(^{th}\), … merging stages, use the original array as the auxiliary array and vice-versa
 • Need one copy at end if number of stages is odd
Swapping Original / Auxiliary Array ("best")

- First recurse down to lists of size 1
- As we return from the recursion, swap between arrays

(ARGUALLY EASIER TO CODE UP WITHOUT RECURSION AT ALL)
Cool Resources

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

• http://www.sorting-algorithms.com/

• https://www.youtube.com/watch?v=t8g-iYGHpEA