CSE 373: Data Structures and Algorithms

Lecture 14: Introduction to Graphs

Instructor: Lilian de Greef
Quarter: Summer 2017
Today

- Overview of Midterm
- Introduce Graphs
 - Mathematical representation
 - Undirected & Directed Graphs
 - Self edges
 - Weights
 - Paths & Cycles
 - Connectedness
 - Trees as graphs
 - DAGs
 - Density & Sparsity
Midterm: Statistics and Distribution

Remember: it’s curved

20% of grade → can pass class with even a 0 on exam

Mean 31.2 /43
Std. dev. 5.48
Median 32.5 /43
Mode 34 /43
Max 41 /43
Midterm: Distribution by Problem
Hash Tables

There is a hash table implemented with linear probing that doubles in size every time its load factor is strictly greater than 1/2. What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item? (let $n = \# \text{items in table}$)

What is the amortized running time to insert an item to this table?
Hash Tables

Now we have a hash table implemented with separate chaining in which each chain stores its keys in sorted order.

What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item into this table?
Introducing: Graphs

Vertices, edges, and paths (oh my!)
Introductory Example

This representation is called a

In this example, locations (Seattle, Bainbridge Island, the East Side, and Mercer Island) are the

And the roads, bridges, and ferry lines are the
Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 - A set of vertices, also known as
 \[V = \{ v_1, v_2, \ldots, v_n \} \]
 - A set of edges
 \[E = \{ e_1, e_2, \ldots, e_m \} \]
 - An edge “connects” the vertices
 - Each edge \(e_i \) is a pair of vertices

- Graphs can be directed or undirected
Another Example:

(\(V = \{\text{characters}\}\),
\(E = \{\text{romances}\}\))
Undirected Graphs

• In **undirected graphs**, edges have no specific direction
 • Edges are always

```
Bainbridge (B)  Seattle (S)  East Side (E)
     |      |     |
     v      v     
  Mercer Island (M)
```

• Thus, \((u, v) \in E\) implies \((v, u) \in E\)
 – Only one of these edges needs to be in the set
 – The other is implicit, so normalize how you check for it

• **Degree** of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices

```
degree(S) =
degree(B) =
```
Directed Graphs

• In **directed graphs** (sometimes called **digraphs**), edges have a direction.

 ![Directed Graph Diagram]

 - **In-degree** of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination.
 - \(\text{In-degree}(E) = \)

 - **Out-degree** of a vertex: number of out-bound edges, i.e., edges where the vertex is the source.
 - \(\text{Out-degree}(B) = \)

• Thus, \((u, v) \in E\) does *not* imply \((v, u) \in E\).
 - Let \((u, v) \in E\) mean \(u \to v\)
 - Call \(u\) the **source** and \(v\) the **destination**.

or
Self-Edges, Connectedness

- A **self-edge** a.k.a. a **loop** is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of

- A graph does not have to be **connected**
 - Even if every node has non-zero degree
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

$$(\text{assuming self-edges allowed, else subtract } |V|)$$

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$

$V = \{S, M, E, B\}$
$E = \{(S, B), (S, E), (S, M), (M, E)\}$

Is M adjacent to B?
Is S adjacent to B?
Is B adjacent to S?
Examples

Which would...
Use directed edges? Have self-edges? Be connected? Have 0-degree nodes?

1. Web pages with links
2. Facebook friends
3. Methods in a program that call each other
4. Road maps (e.g., Google maps)
5. Airline routes
6. Family trees
7. Course pre-requisites
Weighted Graphs

• In a weighed graph, each edge has a **weight** a.k.a. **cost**
 • Typically numeric (most examples use ints)
 • Some graphs allow **negative weights**; many do not
Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

• Web pages with links
• Facebook friends
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, \ldots, v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Said as "a path from \(v_0\) to \(v_n\)."

- A **cycle** is a path that begins and ends at the same node \((v_0 == v_n)\).

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

Path length: Number of *edges* in a path

Path cost: Sum of *weights* of edges in a path

Example:

\[
\text{let } \mathbf{P} = \text{[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]}
\]

\[
\begin{align*}
\text{length}(\mathbf{P}) &= 3.5 \\
\text{cost}(\mathbf{P}) &= 2 + 2 + 2.5 + 2.5 + 2.5 + 3 + 2 = 18
\end{align*}
\]
Simple Paths and Cycles

• A **simple path** repeats no vertices, except the first might be the last
 e.g. [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

• Recall, a **cycle** is a path that ends where it begins
 e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

• A **simple cycle** is a cycle and a simple path
 e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths and Cycles in Directed Graphs

Example:

Is there a path from B to M?

Does the graph contain any cycles?
Undirected-Graph Connectivity

• An undirected graph is **connected** if for all pairs of vertices \((u, v)\), there exists a path from \(u\) to \(v\)

![Connected graph](image1)

• An undirected graph is **complete**, a.k.a. **fully connected** if for all pairs of vertices \((u, v)\), there exists an edge from \(u\) to \(v\)

![Connected graph](image2)
Directed-Graph Connectivity

• A directed graph is **strongly connected** if there is a path from every vertex to every other vertex

• A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*

• A **complete** a.k.a. **fully connected** directed graph has an edge from every vertex to every other vertex *plus self edges*
Practice Time!

Let graph $G = (V, E)$

where

$V = \{a, b, c, d\}$

$E = \{(a, b), (b, c), (a, c), (b, d)\}$

How connected is G?

A. Disconnected
B. Weakly Connected
C. Strongly Connected
D. Complete / Fully Connected
Trees as Graphs

When talking about graphs, we say a tree is a graph that is:

- Connected
- Acyclic
 when you treat edges as undirected

Note that

- Edges can be undirected
- All trees are graphs, but not all graphs are trees
Rooted Trees

• We are more accustomed to rooted trees where:
 • We identify a unique root
 • We think of edges as directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 • The tree is just drawn differently
Rooted Trees

• We are more accustomed to **rooted trees** where:
 • We identify a unique root
 • We think of edges as directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 • The tree is just drawn differently

![Diagram of rooted trees](image-url)
Directed Acyclic Graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links
• Methods in a program that call each other
• Airline routes
• Family trees
• Course pre-requisites
Density / Sparsity

• Recall: In an undirected graph, $0 \leq |E| < |V|^2$
• Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
• So for any graph, $O(|E|+|V|)$ is

• Another fact: If an undirected graph is connected, then $|V|-1 \leq |E|$

• Because $|E|$ is often much smaller than its maximum size, we do not always approximate $|E|$ as $O(|V|^2)$
 • This is a correct bound, it just is often not tight
 • If it is tight, i.e., $|E| = \Theta(|V|^2)$ we say the graph is dense
 • More sloppily, dense means
 • If $|E|$ is $O(|V|)$ we say the graph is sparse
 • More sloppily, sparse means “most possible edges
What is the Data Structure?

• So graphs are really useful for lots of data and questions
 • For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:
 • Properties of the graph (e.g., dense versus sparse)
 • The common queries (e.g., “is (u, v) an edge?” versus “what are the neighbors of node u?”)

• So we’ll discuss the two standard graph representations
 • Adjacency Matrix and Adjacency List
 • Different trade-offs, particularly time versus space
Adjacency Matrix

- Assign each node a number from 0 to $|V|-1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v] == \text{true}$ means there is an edge from u to v
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

• How will the adjacency matrix vary for an *undirected graph*?
 • Undirected will be symmetric around the diagonal

• How can we adapt the representation for *weighted graphs*?
 • Instead of a Boolean, store a number in each cell
 • Need some value to represent ‘not an edge’
 • In *some* situations, 0 or -1 works
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges:
 where d is out-degree of vertex
 - Get all of a vertex’s in-edges:
 (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 where d is out-degree of source
 - Insert an edge:
 (unless you need to check if it’s there)
 - Delete an edge:
 where d is out-degree of source

- Space requirements:
 - $O(|V|+|E|)$

Best for sparse or dense graphs?