CSE 373: Data Structures and Algorithms

Lecture 13: Finish Binary Heaps

Instructor: Lilian de Greef
Quarter: Summer 2017
Today

• Announcements
• Binary Heaps
 • Wrap up array representation of tree
 • Floyd’s Method of buildTree
 • d-heaps
Announcements

• Midterm on Friday
 • Will start at 10:50, will end promptly at 11:50 (even if you’re late), so be early
 • Anything we’ve covered is fair game (including this lecture)
 • Only bring pencils and erasers
 • Turn off / silence and put away any devices (e.g. phone) before exam

• Section
 • Will go over solutions for select problems from practice set
 • Practice set posted on course webpage (under Sections)
 • Recommendation: do the practice problems, then use section to go over the questions you found hardest (there isn’t enough time to cover all of them)

• Homework 3 grades come out today!

• Course feedback today! (anonymous, confidential, something I have set up)
A cool MyClient!

Welcome to Word Association Game: (enter "exit"):
Guess the association.
Word: dirt free
1: capable
2: superficiality
3: dainty
Enter (1, 2 or 3)
>>>3
Correct!
Points: 1

Word: guts
1: strength
2: brass
3: energid
Enter (1, 2 or 3)
>>>2
Strike: 1
Correct answer was strength

Word: avian
1: see life
2: nesting
3: be a success
Enter (1, 2 or 3)
>>>
Another cool MyClient!

Welcome to "Let's Keep It Short!"
Enter the thesaurus preferred:
large_thesaurus.txt
Please enter the text you would like to keep it short (enter "exit" to exit):
Here is an example sentence to show off this cool program!
Here you go! This should keep you under the word limit (if there is one)!

now an type mot to fix off OK program!

Please enter the text you would like to keep it short (enter "exit" to exit):
Entertaining purple elephants give children enjoyable presents.
Here you go! This should keep you under the word limit (if there is one)!

fun rod elephants be get fair presents.

Please enter the text you would like to keep it short (enter "exit" to exit):
I hope my instruction of the abstraction and comparison between data structures is illuminating.
Here you go! This should keep you under the word limit (if there is one)!

hope gen of the tic and sub between ken structures illuminating.

Please enter the text you would like to keep it short (enter "exit" to exit):
Finishing up Binary Heaps

Data Structure for Priority Queue, implemented with arrays!
Binary Trees Implemented with an **Array**

From node i:

- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)
Judging the array implementation

Pros:

- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so \(n-1\) wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index

Cons:

- Same might-be-empty or might-get-full problems we saw with array-based stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation
Heap insert:

1. Put new data in new location (preserve structure property)
2. **Percolate up**: (restore heap property)
 - If higher priority than parent, swap with parent
 - Repeat until parent is more important or reached root
Semi-Pseudocode: `insert` into binary heap

```java
void insert(int val) {
    if (size == arr.length - 1)
        resize();
    size++;
    i = percolateUp(size, val);
    arr[i] = val;
}

int percolateUp(int hole, int val) {
    while (hole > 1 &&
           val < arr[hole/2])
        arr[hole] = arr[hole/2];
    hole = hole / 2;
    return hole;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.
Heap deleteMin:

1. Remove (and later return) item at root
2. “Move” the last item in bottom row to the root \((\text{preserve structure property}) \)
3. **Percolate down:** \((\text{restore heap property}) \)
 - If item has lower priority, swap with the most important child
 - Repeat until both children have lower priority or we’ve reached a leaf node
Semi-Pseudocode: `deleteMin` from binary heap

deleteMin

```java
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
              (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

percolateDown

```java
int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left = 2*hole;
        right = left + 1;
        if(right > size ||
            arr[left] < arr[right])
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```
Example

1. **insert** (in this order): 16, 32, 4, 67, 105, 43, 2

2. **deleteMin** once

```
0 1 2 3 4 5 6 7
| 16 | 32 | 4  | 67 | 105 | 43 | 2 |
```

```
       16
      /  
     32   4
   / \    /
16   67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```

```
       16
      /  
     32   4
   /     /    
16    67 105
         / \    
        43   2
```
Example

1. insert (in this order): 16, 32, 4, 67, 105, 43, 2
2. deleteMin once

![Diagram showing a data structure with elements 2, 32, 4, 67, 105, 43, 16 and arrows indicating the deleteMin operation.]
Other operations (Bonus Material)

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - **decreaseKey with $p = \infty$**, then **deleteMin**

Running time for all these operations?
Build Heap

• Suppose you have \(n \) items to put in a new (empty) priority queue
 • Call this operation \texttt{buildHeap}

• \(n \) inserts
 • Only choice if ADT doesn’t provide \texttt{buildHeap} explicitly
 • Run time: \(O(n \log n) \)

• Why would an ADT provide this unnecessary operation?
 • Convenience
 • Efficiency: an \(O(n) \) algorithm
 • Common issue in ADT design: how many specialized operations

\[\text{heapify} \quad (\text{Floyd's Method}) \]
heapify (Floyd’s Method)

1. Use \(n \) items to make any complete tree you want
 - That is, put them in array indices 1,...,\(n \)

2. Fix the heap-order property
 - Bottom-up: percolate down starting at nodes one level up from leaves, work up toward the root
heapify (Floyd’s Method): Example

1. Use n items to make any complete tree you want
2. Fix the heap-order property from bottom-up

Which nodes break the heap-order property?

Why work from the bottom-up to fix them?
Save repeated work, top-down is same as inserting n nodes.

Why start at one level above the leaf nodes?
Leaves can’t percolate down

Where do we start here?
heapify (Floyd’s Method): Example
heapify (Floyd’s Method): Example
heapify (Floyd’s Method): Example
heapify (Floyd’s Method): Example

The final tree:
heapify (Floyd’s Method)

void buildHeap() {
 for(int i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i, val);
 arr[hole] = val;
 }
}

But is it right? … it “seems to work”

• Let’s prove it restores the heap property
• Then let’s prove its running time

(start at parent of last leaf node)
(Correctness) (Efficiency)
Correctness

Loop Invariant: For all \(j > i \), \(\text{arr}[j] \) is higher priority than its children

- True initially: If \(j > \text{size}/2 \), then \(j \) is a leaf
 - Otherwise its left child would be at position \(> \text{size} \)
- True after one more iteration: loop body and \text{percolateDown} make \(\text{arr}[i] \) higher priority than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children
Efficiency

```c
void buildHeap() {
    for (i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Remember, Asymptotic Analysis means we’re looking at \(n \to \infty \) (really REALLY large values of \(n \)) for the worst case.

Easier argument: buildHeap is \(O(n \log n) \) where \(n \) is size

- \(O(\text{size}/2) \) loop iterations \(\leftarrow O(n) \)
- Each iteration does one percolateDown, each is \(O(\log n) \)

This is correct, but there is a more precise ("tighter") analysis of the algorithm...
Efficiency

```java
void buildHeap() {
    for (i = size/2; i > 0; i--)
        if (val = arr[i];
            hole = percolateDown(i, val);
            arr[hole] = val;
        }
}
```

Better argument: buildHeap is \(O(n)\) where \(n\) is size

- \(\frac{size}{2}\) total loop iterations: \(O(n)\)
- \(\frac{1}{2}\) the loop iterations percolateDown at most 1 step
- \(\frac{1}{4}\) the loop iterations percolateDown at most 2 steps
- \(\frac{1}{8}\) the loop iterations percolateDown at most 3 steps
- ...
- \((1/2) + (2/4) + (3/8) + (4/16) + \ldots\) < 2 (page 4 of Weiss)

\[\sum_{i=1}^{\infty} \frac{i}{2^i} = 2\]

\[\Rightarrow\text{at most } 2 \times \frac{\text{size}}{2} \text{ total percolate steps.} \Rightarrow [O(n)]!\]
Lessons from `buildHeap`

• **Without providing `buildHeap`, clients can implement their own that runs in $O(n \log n)$ worst case**

• By providing a specialized operation (with access to the internal data), we can do $O(n)$ worst case
 • Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
 • **Correctness:** Non-trivial inductive proof using loop invariant
 • **Efficiency:**
 • First (easier) analysis proved it was $O(n \log n)$
 • Tighter analysis shows same algorithm is $O(n)$
Other branching factors for Heaps

d-heaps: have d children instead of 2

- Makes heaps shallower

Example: 3-heap

- Only difference: three children instead of 2
- Still use an array with all positions from 1 ... heapSize

<table>
<thead>
<tr>
<th>Index</th>
<th>Children Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>2</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>3</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>4</td>
<td>11, 12, 13</td>
</tr>
<tr>
<td>5</td>
<td>14, 15, 16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Wrapping up Heaps

• What are heaps a data structure for? Priority Queue ADT

• What is it usually implemented with? Arrays
 Why? Space and time efficiency (fast shift operations)

• What are some example uses?
 (I’ll leave that as an exercise for you 😊)