CSE 373: Data Structures and Algorithms

Lecture 11: Finish AVL Trees; Priority Queues; Binary Heaps

Instructor: Lilian de Greef
Quarter: Summer 2017
Today

• Announcements
• Finish AVL Trees
• Priority Queues
• Binary Heaps
Announcements

• Changes to Office Hours: from now on...
 • No more Wednesday morning & shorter Wednesday afternoon office hours
 • New Thursday office hours!
 • Kyle’s Wednesday hour is now 1:30-2:30pm
 • Ben’s office hours is now Thursday 1:00-3:00pm

• AVL Tree Height
 • In section, computed that minimum # nodes in AVL tree of a certain height is
 $S(h) = 1 + S(h-1) + S(h-2)$ where h = height of tree
 • Posted a proof next to these lecture slides online for your perusal
Announcements

• Midterm
 • Next Friday! (at usual class time & location)
 • Everything we cover in class until exam date is fair game (minus clearly-marked “bonus material”). That includes next week’s material!
 • Today’s hw3 due date designed to give you time to study.

• Course Feedback
 • Heads up: official UW-mediated course feedback session for part of Wednesday
 • Also want to better understand an anonymous concern on course pacing → Poll
Back to AVL Trees

Finishing up last couple cases for insert, then wrapping up BSTs
The **AVL Tree** Data Structure

An **AVL tree** is a *self-balancing* binary search tree.

Structural properties

1. **Binary tree property** (same as BST)
2. **Order property** (same as for BST)
3. **Balance condition:**
 - balance of every node is between -1 and 1

 where \(\text{balance}(node) = \text{height}(node.\text{left}) - \text{height}(node.\text{right}) \)

Result: **Worst-case** depth is \(O(\log n) \)
Single Rotations

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)
Case #3: Right-Left Case

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)
A Better Look at Case #3:

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)
Case #3: Right-Left Case (after one rotation)

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)
Case #3: Right-Left Case (after two rotations)

A way to remember it:
Move d to grandparent’s position. Put everything else in their only legal positions for a BST.

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)
Practice time! Example of Case #4

Starting with this AVL tree:

Which of the following is the updated AVL tree after inserting 42?

A)

B)

C)

D)
Practice time! Example of Case #4

Starting with this AVL tree:

Which of the following is the updated AVL tree after inserting 42?

What’s the name of this case? Left-Right

What rotations did we do? Left rotate (30), Right rotate (60)
Insert, summarized

• Insert as in our generic BST

• Check back up path for imbalance, which will be 4 of 4 cases:
 • Node’s left-left grandchild is too tall
 • Node’s left-right grandchild is too tall
 • Node’s right-left grandchild is too tall
 • Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 • So all ancestors are now balanced
AVL Tree Efficiency

- Worst-case complexity of find: $O(\log n)$

- Worst-case complexity of insert:
 - $O(\log n)$ to find where to insert
 - $O(\log n)$ to do rotation

- Worst-case complexity of buildTree: $O(n \log n)$

Takes some more rotation action to handle delete...

(not covered in this course)
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are *always* balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If *amortized* logarithmic time is enough, use splay trees (also in the text, not covered in this class)
Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:

- **AVL tree**
- **Splay tree**
- **2-3 tree**
- **AA tree**
- **Red-black tree**
- **Scapegoat tree**
- **Treap**

(Not covered in this class, but several are in the textbook and all of them are online!)

Wrapping Up: Hash Table vs BST Dictionary

Hash Table advantages:
- Average \(\Theta(1) \) find, insert, delete

BST advantages:
- Can get keys in sorted order without much extra effort
- Same for ordering statistics, finding closest elements, range queries
- Easier to implement if don’t have hash function (which are hard!).
- Can guarantee \(O(\log n) \) worst-case time, whereas hash tables are \(O(1) \) average time.
Priority Queue ADT

Like a Queue, but with priorities for each element.
An Introductory Example...

Gill Bates, the CEO of the software company Millisoft, built a robot secretary to manage her hundreds of emails. During the day, Bates only wants to look at a few emails every now and then so she can stay focused. The robot secretary sends her the most important emails each time. To do so, he assigns each email a priority when he gets them and only sends Bates the highest priority emails upon request.

<table>
<thead>
<tr>
<th>Priority: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of your computer servers are on fire!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Here’s a reminder for our meeting in 2 months.</td>
</tr>
</tbody>
</table>

Priority Queue ADT

A **priority queue** holds *compare-able data*

- Like dictionaries, we need to *compare items*
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data

- The data typically has two fields:
 - We’ll now use integers for examples, but can use other types / objects for priorities too!

In our introductory example:

```
Item:
  priority: # assigned
  data: email
```

```
new email
```

```
highest priority email
```

```
6  2  15  23  12  18  45  3  7
```
Priority Queue ADT

Meaning:
- A priority queue holds *compare-able data*
- Key property: *delete Min returns* the item with the highest priority and *deletes* (can resolve ties arbitrarily)

Operations:
- delete Min
- insert
- contains
- is Empty
Priority Queue: Example

insert \(x_1 \) with priority 5
insert \(x_2 \) with priority 3
\(a = \) deleteMin
insert \(x_3 \) with priority 2
insert \(x_4 \) with priority 6
\(c = \) deleteMin
\(d = \) deleteMin

Analogy: insert is like enqueue, deleteMin is like dequeue
But the whole point is to use priorities instead of FIFO