Today

- Announcements
- Binary Trees
 - Height
 - Traversals
- Binary Search Trees
 - Definition
 - find
 - insert
 - delete
 - buildTree
Announcements

• Change to office hours for just this week
 • Tuesday’s “office” office hours / private office hours
 • 12:00pm – 12:30pm
 • (not at 1:30pm!)
 • Dorothy and I trading 2:00pm - 3:00pm office hours this week
 • Same time and location

• Homework 1 Statistics
 • Mean: 39.7/50 (+1 extra credit)
 • Median: 42.5/50 (+0 extra credit)
 • Max: 49/50 (+1) or 47/50 (+4)
 • Standard Deviation: 10.18
Binary Trees

Continued – part 2!
Reminder: Tree terminology

- Node / Vertex
- Left subtree
- Right subtree
- Edges
- Leaves
- Root
Binary Trees

- **Binary tree**: Each node has at most 2 children (branching factor 2)
- Binary tree is
 - A root *(with data)*
 - A left subtree *(may be empty)*
 - A right subtree *(may be empty)*

- Special Cases:

![Complete Tree](image)
![Perfect Tree](image)
(Last week’s practice) What does the following method do?

```java
int mystery(Node node) {
    if (node == null),
        return -1;
    return 1 + max(mystery(node.left),
                    mystery(node.right));
}
```

A. It calculates the number of nodes in the tree.
B. It calculates the depth of the nodes.
C. It calculates the height of the tree.
D. It calculates the number of leaves in the tree.
(Last week’s practice) What does the following method do?

```java
int height(Node root) {
    if (root == null),
        return -1;
    return 1 + max(height(root.left),
                    height(root.right));
}
```

A. It calculates the number of nodes in the tree.
B. It calculates the depth of the nodes.
C. It calculates the height of the tree.
D. It calculates the number of leaves in the tree.
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
- max # of leaves: 2^h
- max # of nodes: $2^{h+1} - 1$
- min # of leaves: 1
- min # of nodes: $h+1$

For n nodes, the min height (best-case) is $O(\log n)$
the max height (worst-case) is $O(n)$

$1 + 2 + 4 + 8 + \ldots + 2^h = 2^{h+1} - 1$
Tree Traversals

A **traversal** is an order for visiting all the nodes of a tree

- **Pre-order**: root, left subtree, right subtree

 A B DE G C F

- **In-order**: left subtree, root, right subtree

 DBGEACF

- **Post-order**: left subtree, right subtree, root

 DGEBFCA
Tree Traversals: Practice

Which one makes sense for evaluating this expression tree?

• **Pre-order**: root, left subtree, right subtree
 \[+ \ast 2 4 5 \]

• **In-order**: left subtree, root, right subtree
 \[2 \ast 4 + 5 \]

• **Post-order**: left subtree, right subtree, root
 \[2 4 \ast 5 + \]
Binary Search Trees

A kind of binary tree!
Binary **Search** Tree (BST) Data Structure

- **Structure property** (binary tree)
 - Each node has \(\leq 2 \) children
 - Result: keeps operations simple

- **Order** property
 - All values in left subtree smaller than the node’s value
 - All values in right subtree greater than node’s value
 - Result: straight-forward to find any given value

A **binary search tree** is a type of binary tree
(but not all binary trees are binary search trees!)
Practice: are these BSTs?

Left tree: Yes!

Right tree: No!
How do we find (value) in BST's?
find in BST: Recursive Version

```
Data find(Object value, Node root) {
    if (root == null) return null;
    if (key < root.key) return find(value, root.left);
    if (key > root.key) return find(value, root.right);
    return root.data;
}
```

What is the running time?

- Balanced tree: \(O(\log n)\) \(n=\#\) nodes
- Worst-case: \(O(n)\)
 Happens for very unbalanced tree!
find in BST: Iterative Version

Data

```java
Data find(Object value, Node root){
    while(root != null
        && root.value != value) {
        if (value < root.value)
            root = root.left;
        else (value > root.value)
            root = root.right;
    } 
    if(root == null)
        return null;
    return root.value;
}
```
Other BST “Finding” Operations

findMin: Find *minimum* node

leftmost node

findMax: Find *maximum* node

rightmost node
insert in BST

![Binary Search Tree Diagram]

- Insertion of 13
- Insertion of 8
- Insertion of 31

Worst-case running time: $O(n)$
Practice with \texttt{insert}, primer for \texttt{delete}

Start with an empty tree. Insert the following values, in the given order: \texttt{14, 2, 5, 20, 42, 1, 4, 16}

Then, changing as few nodes as possible, delete the following in order: \texttt{42, 14}

What would the root of the resulting tree be?
A. 2
B. 4
C. 5
D. 16
Practice with insert, primer for delete

Start, with as few nodes as possible, delete the following in order:

42, 14

Insert the following values, in the given order:

14, 2, 5, 20, 42, 1, 4, 16
delete in BST

• Why might delete be harder than insert?
 You don’t want to abandon your child nodes!

• Basic idea:
 find the node to remove,
 the “fix” the tree so that
 it’s still a BST

• Three potential cases to fix:
 - Node has no children (leaf)
 - Node has one child
 - Node has two children
delete case: Leaf

delete (17)
delete case: One Child
delete (15)
delete case: Two Children

delete(5)

What can we replace 5 with?
delete case: Two Children

What can we replace the node with?

Options:

successor — minimum node from the right subtree

predecessor — maximum node from the left subtree
delete case: Two Children (example #2)
delete(23)
Practice with \textit{insert}, primer for \textit{delete}.

Changing as few nodes as possible, delete the following in order:

42, 14

\begin{tikzpicture}

\node (A) at (0,0) {14};
\node (B) at (-2,-2) {2};
\node (C) at (2,-2) {20};
\node (D) at (-4,-4) {1};
\node (E) at (-1,-4) {5};
\node (F) at (1,-4) {16};
\node (G) at (-3,-6) {4};
\node (H) at (0,-6) {42};

\draw (A) -- (B);
\draw (A) -- (C);
\draw (B) -- (D);
\draw (B) -- (E);
\draw (C) -- (F);
\draw (C) -- (H);
\draw (E) -- (G);
\draw (F) -- (H);

\end{tikzpicture}
delete through Lazy Deletion

• Lazy deletion can work well for a BST
 • Simpler
 • Can do “real deletions” later as a batch
 • Some inserts can just “undelete” a tree node

• But
 • Can waste space and slow down find operations
 • Make some operations more complicated:
 • e.g., findMin and findMax?
buildTree for BST

Let’s consider buildTree (insert values starting from an empty tree)

Insert values 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• If inserted in given order, what is the tree?

• What big-O runtime for buildTree on this sorted input?

• Is inserting in the reverse order any better?