CSE 373: Data Structures and Algorithms
Lecture 7: Hash Table Collisions

Instructor: Lilian de Greef
Quarter: Summer 2017
Today

• Announcements
• Hash Table Collisions
• Collision Resolution Schemes
 • Separate Chaining
 • Open Addressing / Probing
 • Linear Probing
 • Quadratic Probing
 • Double Hashing
• Rehashing
Announcements

• Reminder: homework 2 due tomorrow
• Homework 3: Hash Tables
 • Will be out tomorrow night
 • Pair-programming opportunity! (work with a partner)
 • Ideas for finding partner: before/after class, section, Piazza
• Pair-programming: write code together
 • 2 people, 1 keyboard
 • One is the “navigator,” the other the “driver”
 • Regularly switch off to spend equal time in both roles
 • Side note: our brains tend to edit out when we make typos
 • Need to be in same physical space for entire assignment, so partner and plan accordingly!
Review: Hash Tables & Collisions
Hash Tables: Review

• A data-structure for the dictionary ADT
• *Average case* $O(1)$ *find, insert, and delete* (when under some often-reasonable *assumptions*)
• An array storing (key, value) pairs
• Use *hash value* and table size to calculate array index
• Hash value calculated from key using *hash function*

```
find, insert, or delete (key, value)

  apply hash function
  h(key) = hash value

  index = hash value % table size

  if collision, apply collision resolution

  array[index] = (key, value)
```
Hash Table Collisions: Review

• Collision:

• We try to *avoid* them by

• Unfortunately, collisions are unavoidable in practice
 • Number of possible keys >> table size
 • No perfect hash function & table-index combo
Collision Resolution Schemes: your ideas
Collision Resolution Schemes: your ideas
Separate Chaining

One of several collision resolution schemes
Separate Chaining

All keys that map to the same table location (aka “bucket”) are kept in a list (“chain”).

Example:

insert 10, 22, 107, 12, 42
and **TableSize** = 10

(for illustrative purposes, we’re inserting hash values)
Separate Chaining: Worst-Case

What’s the worst-case scenario for find?

What’s the worst-case running time for find?

But only with really bad luck or really bad hash function
Separate Chaining: Further Analysis

• How can find become slow when we have a good hash function?

• How can we reduce its likelihood?
Definition: The load factor (λ) of a hash table with N elements is

$$\lambda = \frac{N}{\text{table size}}$$

Under separate chaining, the average number of elements per bucket is _____

For a random find, on average
- an unsuccessful find compares against _______ items
- a successful find compares against _______ items
Rigorous Analysis: Load Factor

Definition: The load factor \((\lambda)\) of a hash table with \(N\) elements is

\[
\lambda = \frac{N}{\text{table size}}
\]

To choose a good load factor, what are our goals?

So for separate chaining, a good load factor is
Open Addressing / Probing

Another family of collision resolution schemes
Idea: use empty space in the table

- If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10
Open Addressing Terminology

Trying the next spot is called (also called)

- We just did
 \[i^{th} \text{ probe was } (h(key) + i) \mod \text{TableSize} \]

- In general have some \(f \) and use
 \[(h(key) + f(i)) \mod \text{TableSize} \]
Dictionary Operations with Open Addressing

`insert` finds an open table position using a probe function

What about `find`?

What about `delete`?

- Note: `delete` with separate chaining is plain-old list-remove
Practice:

The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the resultant hash table?

(A)

(B)

(C)

(D)
Open Addressing: Linear Probing

• Quick to compute! 😊
• But mostly a *bad idea*. Why?
(Primary) Clustering

Linear probing tends to produce *clusters*, which lead to long probing sequences

- Called
- Saw this starting in our example

[R. Sedgewick]
Analysis of Linear Probing

• For any $\lambda < 1$, linear probing will find an empty slot
 • It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as $\text{TableSize} \to \infty$)
 • Unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)$
 • Successful search: $\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)$

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
Analysis: Linear Probing

- Linear-probing performance degrades rapidly as table gets full
 (Formula assumes “large table” but point remains)

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$
Any ideas for alternatives?
Open Addressing: Quadratic Probing

• We can avoid primary clustering by changing the probe function
 \[(h(key) + f(i)) \mod \text{TableSize}\]

• A common technique is quadratic probing: \[f(i) = i^2\]
 • So probe sequence is:
 • 0th probe: \(h(key) \mod \text{TableSize}\)
 • 1st probe:
 • 2nd probe:
 • 3rd probe:
 • ...
 • \(ith \) probe: \((h(key) + i^2) \mod \text{TableSize}\)

• Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example #1

Table Size = 10
Insert:
- 89
- 18
- 49
- 58
- 79

\[i^{th} \text{ probe: } (h(\text{key}) + i^2) \mod \text{Table Size} \]
Quadratic Probing Example #2

Table Size = 7

Insert:
76 (76 \mod 7 = 6)
40 (40 \mod 7 = 5)
48 (48 \mod 7 = 6)
5 (5 \mod 7 = 5)
55 (55 \mod 7 = 6)
47 (47 \mod 7 = 5)

i^{th} probe: (h(key) + i^2) \mod TableSize
Quadratic Probing: Bad News, Good News

• Bad news:
 • Quadratic probing can cycle through the same full indices, never terminating despite table not being full

• Good news:
 • If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most $\frac{\text{TableSize}}{2}$ probes
 • So: If you keep $\lambda < \frac{1}{2}$ and TableSize is prime, no need to detect cycles
 • Proof is posted online next to lecture slides
 • Also, slightly less detailed proof in textbook
 • Key fact: For prime T and $0 < i, j < T/2$ where $i \neq j$,
 $$(k + i^2) \mod T \neq (k + j^2) \mod T \quad (\text{i.e., no index repeat})$$
Clustering Part 2

- Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood

- But it’s no help if keys initially hash to the same index:

 This is called

- Can avoid secondary clustering
Open Addressing: Double Hashing

Idea:
• Given two good hash functions h and g, it is very unlikely that for some key, $h(\text{key}) == g(\text{key})$
• So make the probe function $f(i) = i \times g(\text{key})$

Probe sequence:
• 0^{th} probe: $h(\text{key}) \mod \text{TableSize}$
• 1^{st} probe: $(h(\text{key}) + g(\text{key})) \mod \text{TableSize}$
• 2^{nd} probe:
• 3^{rd} probe:
• ...
• i^{th} probe: $(h(\text{key}) + i \times g(\text{key})) \mod \text{TableSize}$
Double Hashing Analysis

• Intuition: Because each probe is “jumping” by $g(key)$ each time, we “leave the neighborhood” and “go different places from other initial collisions”

• Requirements for second hash function:

• Example of double hash function pair that works:
 • $h(key) = key \mod p$
 • $g(key) = q - (key \mod q)$
 • $2 < q < p$
 • p and q are prime
More Double Hashing Facts

• Assume “uniform hashing”
 • Means probability of \(g(key_1) \% p = g(key_2) \% p \) is \(1/p \)

• Non-trivial facts we won’t prove:
 Average # of probes given \(\lambda \) (in the limit as \(\text{TableSize} \to \infty \))
 • Unsuccessful search (intuitive): \(\frac{1}{1-\lambda} \)
 • Successful search (less intuitive): \(\frac{1}{\lambda} \log_e \left(\frac{1}{1-\lambda} \right) \)

• Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad
Rehashing
Rehashing

• What do we do if the table gets too full?

• How do we copy over elements?
Rehashing

• What’s “too full” in Separate Chaining?

• “Too full” for Open Addressing / Probing
Rehashing

• How big do we want to make the new table?

• Can keep a list of prime numbers in your code, since you likely won't grow more than 20-30 times ($2^{30} = 1,073,741,824$)