CSE 373

APRIL 7TH – FLOYD’S ALGORITHM
ASSORTED MINUTIAE

• HW1P2 due tonight
• HW2 out
 • No java libraries
TODAY’S SCHEDULE

• buildHeap()
• Floyd’s algorithm
• Analysis
REVIEW

• Heaps
 • Properties
 • Completeness
 • Heap property
• Is this a heap?
• Is this a heap?
• No. Why?
REVIEW

• Is this a heap?
REVIEW

• Is this a heap?
• No. Why
• Is this a heap?
REVIEW

• Heaps
 • Properties
 • Completeness
 • Heap property
 • Implementation
 • Array (0 v 1 indexing)
• Array property
REVIEW

- Array property
REVIEW

- Array property
REVIEW

• Array property
 • 0 indexing:
 • left = 2*i + 1
 • right: 2*i + 2
 • parent: (i−1) / 2
 • 1 indexing:
 • left = 2*i
 • right = 2*i + 1
 • parent: i / 2
HEAPS

• Operations
 • Insert: adds a data, priority pair into the heap
HEAPS

• Operations
 • Insert: adds a data, priority pair into the heap
 • deleteMin: returns and removes the item of smallest priority from the heap
 • changePriority: changes the priority of a particular item in the heap

• What are the (worst-case) runtimes for these operations?
HEAPS

• Insert:
 • Add the element at the bottom of the tree
 • “Percolate up” that element to its correct place

• Adding to the end of a tree? $O(1)$

• Percolating up? $O(\text{height}) = O(\log n)$
 • What is the height of a heap? $\log_2 n$
HEAPS

• **deleteMin:**
 - Move the last element up to the top of the tree
 - Percolate that element down
 - Return the original root of the tree.

• Copying element? O(1)
• Percolating down? O(log n)
• Returning element? O(1)
HEAPS

• changePriority:
 • Find the element
 • Percolate up/down
• Finding in a heap? $O(n)$ Why?
 • Heap property does not give us the divide and conquer benefit
• Percolate up/down? $O(\log n)$
• On average, is it faster to percolate up or down?
HEAPS

• Facts of binary trees
 • Increasing the height by one doubles the number of possible nodes
 • Therefore, a complete binary tree has half of its nodes in the leaves
 • A new piece of data is much more likely to have to percolate down to the bottom than be the smallest item in the heap
BUILDHEAP

• Back to the problem from Wednesday
• Given an arbitrary array of size n, form the array into a heap
 • Naïve approach(es):
 • Sort the array: $O(n \log n)$
 • Insert each element into a new heap.
 $\log n$ operation performed n times: $O(n \log n)$
FUN FACTS!

• Is it really $O(n \log n)$?
 • Early insertions are into empty trees $O(1)$!
 • Consider a simpler example, creating a sorted linked list.
 • Adding at the end of a linked list with k items takes $O(k)$ operations.

$1+2+3+4+5\ldots$

What is this summation?
FUN FACTS!

\[\sum_{k=1}^{n} k = \frac{1}{2} n (n + 1) \]

• What does this mean?
• Summing \(k \) from 1 to \(n \) is still \(O(n^2) \)
• Similarly, summing \(\log(k) \) from 1 to \(n \) is \(O(n \log n) \)
BUILDHEAP

• So a naïve buildheap takes $O(n \log n)$
 • Why implement at all?
 • If we can get it $O(n)$!
FLOYD’S METHOD

- Traverse the tree from bottom to top
 - Reverse order in the array
- Start with the last node that has children.
 - How to find? Size / 2
- Percolate down each node as necessary
 - Wait! Percolate down is O(log n)!
 - This is an O(n log n) approach!
FLOYD’S METHOD

• It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!

• How far does each node travel (at worst)
 • 1/2 of the nodes don’t move:
 • These are leaves – Height = 0
 • 1/4 can move at most one
 • 1/8 can move at most two …
FLOYD’S METHOD

\[
\sum_{i=0}^{n} \frac{i}{2^{i+1}} = 2^{-n-1} \left(-n + 2^{n+1} - 2 \right)
\]

- Thanks Wolfram Alpha!
- Does this look like an easier summation?
FLOYD’S METHOD

\[\sum_{i=0}^{\infty} \frac{1}{2^i+1} = 1 \]

- This is a must know summation!
- \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 1\)
- How do we use this to prove our complicated summation?
FLOYD’S METHOD

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \ldots \quad \ldots + \frac{1}{2^n} = 1 \]

\[\frac{1}{4} + \frac{1}{8} \ldots \quad \ldots + \frac{1}{2^n} = \frac{1}{2} \]

\[\frac{1}{8} \ldots \quad \ldots + \frac{1}{2^n} = \frac{1}{4} \]

• Vertical columns sum to: \(\frac{i}{2^i} \), which is what we want

• What is the right summation?
 • Our original summation plus 1
FLOYD’S METHOD

\[\sum_{i=1}^{\infty} \frac{i}{2^i} = 2 \]

- This means that the number of swaps we perform in Floyd’s method is 2 times the size… So Floyd’s method is \(O(n) \)
NEXT WEEK

• Guest lecturer!
• Proof of Floyd’s method correctness
• Introducing the Dictionary ADT