CSE 373

APRIL 3RD – ALGORITHM ANALYSIS
ASSORTED MINUTIAE

- HW1P1 due tonight at midnight
- HW1P2 due Friday at midnight
- HW2 out tonight
- Second Java review session:
 - Friday 10:30 – ARC 147
TODAY’S SCHEDULE

• Algorithm Analysis, cont.
• Floyd’s algorithm
REVIEW FROM LAST WEEK

• Algorithm Analysis
 • Testing is for implementations
 • Analysis is for algorithms
 • Runtime, memory and correctness
 • Best case, average case, worst case
 • Over groups of inputs, not just one
ALGORITHM ANALYSIS

- Principles of analysis
 - Determining performance behavior
 - How does an algorithm react to new data or changes?
 - Independent of language or implementation
ALGORITHM ANALYSIS

• Example: find()
 • Sorted v Unsorted
 • How is insert impacted?
 • A sorted array gives us faster find because we can use binary search
 • Can we prove that this is the case?
BINAR Y SEARCH

• Analyzing binary search.
• What is the worst case?
 • When the item is not in the list
• How long does this take to run?
BINARY SEARCH

- **Consider the algorithm**

```java
public int binarySearch(int[] data, int toFind) {
    int low = 0; int high = data.length-1;
    while(low <= high){
        int mid = (low+high)/2;
        if(toFind>mid) low = mid+1; continue;
        else if(toFind<mid) high = mid-1; continue;
        else return mid;
    }
    return -1;
}
```
BINARY SEARCH

• What is important here?
 • At each iteration, we eliminate half of the remaining elements.

• How long will it take to reach the end?
 • At first iteration, N/2 elements remain
 • At second, N/4 elements remain
 • At the kth iteration?
BINARY SEARCH

• At the kth iteration:
 • \(\frac{N}{2^k} \) elements remain.

• When does this terminate?
 • When \(\frac{N}{2^k} = 1 \)

• How many iterations then? Solve for \(k \).
BINARY SEARCH

- Solve for k.
 \[\frac{N}{2^k} = 1 \]
 \[N = 2^k \]
 \[\log_2 N = k \]

- Is this exact?

- Where was the error introduced?
 - N can be things other than powers of two
 - Ceiling and floor rounding
ANALYSIS

• If this isn’t exact, is it still correct?
• Yes. We care about asymptotic growth.
 • How a the runtime of an algorithm grows with big data
• To incorporate this perspective, we use bigO notation
BIG-O NOTATION

• Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime

• For example, if an algorithm A is $O(\log n)$, that means some logarithmic function upper bounds A.
BIG-O NOTATION

• Formally, a function $f(n)$ is $O(g(n))$ if there exists a c and n_0 such that:
• For all $n \geq n_0$, $f(n) \leq c \times g(n)$
• To prove a function is $O(g(n))$, simply find the c and n_0
BIG-O NOTATION

• Example: is $5n^3 + 2n$ in $O(n^4)$?
• Can we find a c, n_0 such that:
 • $5n^3 + 2n < c*n^4$ for all $n > n_0$

Let $c = 7$; $5n^3 + 2n < 7n^4$

$5n^3 + 2n < 5n^4 + 2n^4$

Since $n^4 > n^3$ and $n^4 > n$ for $n > 1$

$5n^3 + 2n < 7n^4$ for all $n > 1$

Therefore, $5n^3 + 2n$ is $O(n^4)$
BIG-O NOTATION

• This is an upper bound, so if $5n^3 + 2n$ is in $O(n^4)$, then $5n^3 + 2n$ is in $O(n^5)$ and $O(n^n)$

• Is $5n^3 + 2n$ in $O(n^3)$?

• Yes, let c be 7 and $n > 1$
BIG-O NOTATION

• Big-O is for upper bounds.
• It’s equivalent for lower bounds is big Omega

Formally, a function $f(n)$ is $\Omega(g(n))$ if there exists a c and $n_0 > 0$ such that:
• For all $n \geq n_0$, $f(n) \geq c \times g(n)$

• If a function $f(n)$ is in $O(g(n))$ and $\Omega(g(n))$
BIG-O NOTATION

• If a function $f(n)$ is in $\Theta(g(n))$ and $\Omega(g(n))$, then $g(n)$ is a tight bound on $f(n)$, we call this big theta.

• Formally, if $f(n)$ is in $\Theta(g(n))$ and $\Omega(g(n))$, then $f(n)$ is in $\Theta(g(n))$.

• Note that the two will have different c and n_0.

BIG O NOTATION

• What does this help us with?
 • Sort algorithms into families
 • O(1): constant
 • O(log n): logarithmic
 • O(n): linear
 • O(n^2): quadratic
 • O(n^k): polynomial
 • O(k^n): exponential
BIG O NOTATION

• What does this help us with?
 • The constant multiple c lets us organize similar algorithms together.
 • Remember that $\log_a k$ and $\log_b k$ differ by a constant factor?
 • That makes all logs in the same family
CORRECTNESS ANALYSIS

• How do we show an algorithm is correct?
 • Need to look at the approach
public int binarySearch(int[] data, int toFind) {
 int low = 0; int high = data.length-1;
 while(low <= high) {
 int mid = (low+high)/2;
 if(toFind > mid) low = mid+1; continue;
 else if(toFind < mid) high = mid-1; continue;
 else return mid;
 }
 return -1;
}
BINARY SEARCH CORRECTNESS

- Prove binary search returns the correct answer
 - Need property of sortedness
 - For all pairs i,j in the array:
 - If $A[i] \leq A[j]$, then $i \leq j$
 - Binary search always chooses the correct side
 - End case: low = high
ANALYSIS

• Let’s find an interesting algorithm to analyze

• Given an array of length n, how do we make that array into a heap?

• Naïve approach?
 • Make a new heap and add each element of the array into the heap
 • How long to finish?
ANALYSIS

• Naïve approach:
 • Must add n items
 • Each add takes how long? $\log(n)$
 • Whole operation is $O(n \log(n))$
 • Can we do better?
 • What is better? $O(n)$
NEXT CLASS

• Analyzing buildHeap
• Function tradeoffs
• Precomputation