CSE 373

JUNE 2ND – EXAM REVIEW
ASSORTED MINUTIAE

• Exam Review – Today 4:30 – 6:00 EEB 105
• HWs 5 and 6 back this weekend
• Submit regrade requests for before exam time
• Old patches gone through, recheck grades
• Extra assignment due tonight at midnight
 • No late days allowed
 • “Closes” at 12:30, but anything after 12:00 is up to my judgement
ASSORTED MINUTIAE

• Course evaluations
 • Very important to this class and this department
 • Above all, they’re very important to me
 • Should only take ~5 minutes, and it’s very valuable feedback
TODAY’S LECTURE

• Exam Review
 • Important topics
 • Exam is comprehensive, but review will focus on the new material
EXAM FORMAT

• 1:50 to complete 12 problems
• First question is short answer, which has many parts of varying difficulty, it is not likely to be the easiest
• Runtime and debugging questions
• Technical questions
• Algorithm Design question
EXAM FORMAT

• We will be our most strict grading yet, don’t make any assumptions that aren’t explicit

• Analysis work needs to be thorough and concrete, recurrences and summations will likely be required

• Show all of your work. Many algorithms are trivial to solve by hand. Just providing “the solution” will not earn points. Algorithms are about process.
EXAM FORMAT

• A time crunch is likely
 • There are many topics that need to be covered
 • Get down things that you know, and if you don’t make progress move on and come back
TOPICS

• Definitions
 • ADT – Abstract Data Type – Describes a certain set of functionality and behavior
 • e.g. PriorityQueue
 • Data structure – Theoretical storage method that implements an ADT.
 • e.g. Heap
 • Implementation – Low-level design decisions that are often language dependent
 • e.g. Using an array for the heap
TOPICS

• Stacks and Queues
 • LIFO and FIFO ordered storage respectively
 • Can be implemented with arrays or linked lists
 • Understand the desired behavior and how to implement these structures
TOPICS

• Priority Queues
 • Insert(key, priority)
 • findMin()
 • deleteMin()
 • changePriority()
TOPICS

- Heaps
 - Usually array implementations
 - Heap property
 - Complete trees
 - Runtimes and buildHeap()
TOPICS

• Algorithm analysis
 • bigO, bigOmega, bigTheta
 • c and n₀
 • Asymptotic behavior
 • Memory analysis
 • Recurrences
 • Summations
TOPICS

• Dictionary
 • ADT- insert(k,v), find(k) delete(k)
 • Many possible underlying data structures
 • Different runtimes (and support)
TOPICS

• Binary search trees
 • Best and worst case
 • Traversals
• Balance property – AVL
 • Rotations and correctness
TOPICS

• Hashtables
 • Linear, quadratic, secondary hashing
 • Separate chaining
 • Load factor and resizing
 • Primary and Secondary clustering
 • Runtime and memory constraints
TOPICS

• Graphs
 • Notation $G(V,E)$
 • Traversals
 • Topological Sorts
• Properties
 • Directed v. Undirected
 • Dense v. Sparse
 • Weighted v. Unweighted
 • Cyclic v. Acyclic
TOPICS

• Graphs
 • Algorithms
 • Dijkstra’s – path finding
 • Prim’s and Kruskal’s – Minimum spanning trees
 • Know their runtimes and the data structures they rely on for those runtimes…
TOPICS

• Iterators
 • hasNext(), next()
 • Can iterate over any domain
 • Usually helpful to get connected and relevant data together
 • Can break up processing for each call, rather than doing all the processing at once
 • May not always be advised
TOPICS

• Union find
 • ADT – Disjoint sets
 • Partitions
 • Weighted Union
 • Path compression
 • Uptree – single array representation
TOPICS

• Sorting
 • Insertion and Selection
 • Heap, Merge and Quick
 • Bucket and Radix

• Properties
 • Comparison sorts
 • Stable
 • In place
 • Interruptible (top k)
TOPICS

- Analysis
 - Lower bound for comparison sorts
 - Memory usages for sorting
 - Best and worst case runtimes
TOPICS

• Testing
 • White box v. Black box
 • Identifying edge cases
 • Difficulties and techniques

• Debugging
 • Programming process
 • Understanding code and potential problems
TOPICS

• Memory
 • Temporal and Spatial localities
 • Pages and their use
 • Tiered caching
 • Impact on cloud computing
TOPICS

• Algorithm Design
 • How can you approach the problem?
 • Guess and check (Approximation)
 • Brute Force (Linear Work)
 • Divide and Conquer
 • Greedy algorithms (make best decision for a local sub-problem)
 • Randomization, Las Vegas and Monte Carlo
 • Preprocessing
TOPICS

• Algorithm Design
 • Find an approach to the problem that finds the solution
 • Understand what the edge cases are
 • Be able to analyze best-case, worst-case and memory usage of your algorithm
 • Randomization is okay if you can show it’s faster than a more clever solution.
STRATEGIES

• Go through the exam from easiest to hardest
 • Problems in the middle may be the easiest
• Be as thorough as possible, if you think it’s relevant and correct, include it
• Algorithm Design problem is as much about analysis as it is about clever solutions, so don’t leave that done poorly
• Think about what things make certain algorithms tricky – highly likely for this final
FINAL WORDS

• Great quarter!
• Stressful week
 • Nothing feels better than walking out of an exam and…
 • Filling out course evaluations!
• Course has been tough
 • But you have learned a lot
 • and you’re going to show us on Tuesday
FINAL WORDS

• Good luck!
• Have a nice summer!