CSE 373

MAY 17TH – COMPARISON SORTS
ASSORTED MINUTIAE

- HW5 Due Friday – Code + Writeup
- HW6 on Sorting – Out Friday, due following Friday
- Extra assignment out tonight, due June 2nd
 - No late days
SORTING

INEFFECTIVE SORTS

DEFINE HALFHEARTEDMergesort(LIST):
IF LENGTH(LIST) < 2:
 RETURN LIST

 PIVOT = INT(LENGTH(LIST) / 2)
 \ A = HALFHEARTEDMergesort(LIST[: PIVOT])
 \ B = HALFHEARTEDMergesort(LIST[PIVOT :])
 \ UMMMM
 RETURN [A, B] // HERE... SORRY.

DEFINE FASTBOGOSORT(LIST):
// AN OPTIMIZED BOGOSORT
// RUNS IN O(N LOG N)
FOR N FROM 1 TO LOG(LENGTH(LIST)):
 SHUFFLE(LIST)
 IF ISORTED(LIST):
 RETURN LIST
 RETURN "KERNEL PAGE FAULT (ERROR CODE: 2)"

DEFINE JOYNERVIEWQUICKSORT(LIST):
OK SO YOU CHOOSE A PIVOT
THEN DIVIDE THE LIST IN HALF
FOR EACH HALF:
CHECK TO SEE IF IT'S SORTED
NO UNIT IT DOESN'T MATTER
COMPARE EACH ELEMENT TO THE PIVOT
THE BIGGER ONES GO IN A NEW LIST
THE EQUAL ONES GO IN B, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE LISTS
THIS IS LIST A
THE NEW ONE IS LIST B
PUT THE BIG ONES INTO LIST B
NOW TAKE THE SECOND LIST
CALL IT LIST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
IT JUST RECURSIVELY CALLS ITSELF
UNTIL BOTH LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT I MEAN
AM I ALLOWED TO USE THE STANDARD LIBRARIES?

DEFINE PAINCSORT(LIST):
IF ISORTED(LIST):
 RETURN LIST
FOR N FROM 1 TO 10000:
 PIVOT = RANDOM(0, LENGTH(LIST))
 \ LIST = LIST[PIVOT :] + LIST[: PIVOT]
 IF ISORTED(LIST):
 RETURN LIST
 IF ISORTED(LIST):
 RETURN LIST
 IF ISORTED(LIST):
 // THIS CAN'T BE HAPPENING
 RETURN LIST
 IF ISORTED(LIST):
 // COME ON COME ON
 RETURN LIST
 // OH JEEZ
 // I'M GONNA BE IN SO MUCH TROUBLE
 LIST = []
 \ SYSTEM("SHUTDOWN -H +S")
 \ SYSTEM("RM -RF .")
 \ SYSTEM("RM -RF ~/")
 \ SYSTEM("RM -RF /")
 \ SYSTEM("RD /S/Q/C:\") // PORTABILITY
 RETURN [1, 2, 3, 4, 5]
SORTING

• Problem statement:
 • Given some collection of comparable data, arrange them into an organized order
 • Important to note that you may be able to “organize” the same data different ways
SORTING

• Why sort at all?
 • Data pre-processing
 • If we do the work now, future operations may be faster
 • Unsorted v. Sorted Array, e.g.
• Why not just maintain sortedness as we add?
 • Most times, if we can, we should
 • Why would we not be able to?
SORTING

• Maintaining Sortedness v. Sorting
 • Why don’t we maintain sortedness?
 • Data comes in batches
 • Multiple “sorted” orders
 • Costly to maintain!

• We need to be sure that the effort is worth the work
 • No free lunch!

• What does that even mean?
BOGO SORT

• Consider the following sorting algorithm
 • Shuffle the list into a random order
 • Check if the list is sorted,
 • if so return the list
 • if not, try again

• What is the problem here?
 • Runtime! Average $O(n!)$!
 • Why is this so bad?

• The computer isn’t thinking, it’s just guess-and-checking
SORTING

• **Guess-and-check**
 - Not a bad strategy when nothing else is obvious
 - Breaking RSA
 - Greedy-first algorithms
 - Final exams
 - If you don’t have a lot of time, or if the payoff is big, or if the chance of success is high, then it might be a good strategy
 - Random/Approximized algs
SORTING

• Why not guess-and-check for sorting?
 • Not taking advantage of the biggest constraint of the problem
 • Items must be comparable!
 • You should be comparing things!
 • Looking at two items next to each other tells a lot about where they belong in the list, there’s no reason not to use this information.
SORTING

• Types of sorts
 • Comparison sorts
 • Bubble sort
 • Insertion sort
 • Selection sort
 • Heap sort, etc…
 • “Other” sorts
 • Bucket sort – will talk about later
 • Bogo sort
MORE REASONS TO SORT

General technique in computing:

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

• Find the k^{th} largest in constant time for any k
• Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

• How often the data will change (and how much it will change)
• How much data there is
MORE DEFINITIONS

In-Place Sort:

A sorting algorithm is in-place if it requires only $O(1)$ extra space to sort the array.
- Usually modifies input array
- Can be useful: lets us minimize memory

Stable Sort:

A sorting algorithm is stable if any equal items remain in the same relative order before and after the sort.
- Items that ’compare’ the same might not be exact duplicates
- Might want to sort on some, but not all attributes of an item
- Can be useful to sort on one attribute first, then another one
STABLE SORT EXAMPLE

Input:

\[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")\]

Compare function: compare pairs by number only

Output (stable sort):

\[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")\]

Output (unstable sort):

\[(4, "wolf"), (8, "cow"), (8, "fox"), (9, "dog")\]
SORTING: THE BIG PICTURE

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Shell sort
- ...

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Merge sort
- Quick sort (avg)
- ...

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
INSERTION SORT

1. current item
2. insert where it belongs in sorted section
3. shift other elements over and already sorted section is now larger
4. new current item

already sorted
unsorted

already sorted
unsorted

already sorted
unsorted

already sorted
unsorted
INSERTION SORT

Idea: At step k, put the k^{th} element in the correct position among the first k elements

```java
for (int i = 0; i < n; i++) {
    // Find index to insert into
    int newIndex = findPlace(i);
    // Insert and shift nodes over
    shift(newIndex, i);
}
```

What can we say about the list at loop i? first i elements are sorted (not necessarily lowest in the list)

Runtime? Best case: $O(n)$, Worst case: $O(n^2)$ Why?

Stable? Usually

In-place? Yes
SELECTION SORT

<table>
<thead>
<tr>
<th>Already Sorted</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 7 8 6 4 5</td>
<td></td>
</tr>
</tbody>
</table>

Current Index: 1

Next Smallest: 7

Now ‘already sorted’ section is one larger.

<table>
<thead>
<tr>
<th>Already Sorted</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 8 6 7 5</td>
<td></td>
</tr>
</tbody>
</table>

Current Index: 3

Next Smallest: 4

Swap

<table>
<thead>
<tr>
<th>Already Sorted</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 8 6 7 5</td>
<td></td>
</tr>
</tbody>
</table>

Current Index: 4

Next Smallest: 8

Swap

<table>
<thead>
<tr>
<th>Already Sorted</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 8 6 7 5</td>
<td></td>
</tr>
</tbody>
</table>

Current Index: 4

Next Smallest: 8

Swap

<table>
<thead>
<tr>
<th>Already Sorted</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 8 6 7 5</td>
<td></td>
</tr>
</tbody>
</table>
SELECTION SORT

- Can be interrupted (don’t need to sort the whole array to get the first element)
- Doesn’t need to mutate the original array (if the array has some other sorted order)
- Stable sort
INSERTION SORT VS. SELECTION SORT

Have the same worst-case and average-case asymptotic complexity

- Insertion-sort has better best-case complexity; preferable when input is “mostly sorted”

Useful for small arrays or for mostly sorted input
SORTING: THE BIG PICTURE

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
NEXT CLASS

• Fancier sorts!
• How fancy can we get?