CSE 373

APRIL 19TH – AVL OPERATIONS
ASSORTED MINUTIAE

• HW2 code grades out tonight
• HW3 due tonight
 • Last HW before midterm
• Exam review
 • Next Wednesday (in class)
 • Options for TA review session out tonight
TODAY’S LECTURE

• AVL Trees
 • Balance
 • Implementation

• Memory analysis
 • Will discuss after AVL on Friday
REVIEW

• **AVL Trees**
 • BST trees with AVL property
 • $\text{Abs}(\text{height(left)} - \text{height(right)}) \leq 1$
 • Heights of subtrees can differ by at most one
 • This property must be preserved throughout the tree
• Is this an AVL Tree? Yes!
 • Calculate balance for each node
• What about this one?
• What about this one?
 • No, 8 is out of balance
• Is this an AVL Tree?
• Is this an AVL Tree?
 • No, AVL trees must still maintain Binary Search
AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality
 - Insert(key k, value v)
 - Find(key k): Same as BST!
 - Delete(key k): Not presented in this course
- For insert, we should maintain AVL property as we build
AVL OPERATIONS

• Insert(key k, value v):
 • Insert the key value pair into the dictionary
 • Verify that balance is maintained
 • If not, correct the tree

• How do we correct the tree?
AVL INSERT

- Start with the single root
• Add 7 to the tree. Is balance preserved?
 • Yes
AVL INSERT

- Add 9 to the tree. Is balance preserved?
 - No.
• How do we correct this imbalance?
 • Important to preserve binary search
AVL INSERT

- What shape do we want?
 - What then do we have as the root?
• Since 7 must be the root, we “rotate” that node into position.
AVL “ROTATION”

• To correct this case:
 • B must become the root
 • We rotate B to the root position
 • A becomes the left child of B
 • This is called the “left rotation”
AVL “ROTATION”

• Right rotation
 • Symmetric concept
 • B must become the new root
AVL “ROTATION”

• These are the “single” rotations
 • In general, this rotation occurs when an addition is made to the right-right or left-left grandchild
 • The balance might not be off on the parent! An insert might upset balance up the tree
AVL “ROTATION”

• General case
 • Suppose this tree is balanced, \{X,Y,Z\} all have the same height
AVL “ROTATION”

• **General case**
 - Suppose this tree is balanced, \{X,Y,Z\} all have the same height
 - Adding A, puts C out of balance
 - Rotate B up and pass the Y subtree to C
AVL “ROTATION”

- **General case**
 - Suppose this tree is balanced, \{X,Y,Z\} all have the same height
 - Adding A, puts C out of balance
 - Rotate B up and pass the Y subtree to C
 - **Perform this rotation at the lowest point of imbalance**
• Consider the above tree
 • Is it an AVL tree? Yes
• Add 16 to the tree
 • Is it unbalanced now? Where? 22
 • Also at 15, but we choose the lowest point
SINGLE ROTATION EXAMPLE

- Perform the rotation around 22
 - What rotation takes place?
• Perform the rotation around 22
 • What rotation takes place?
 • What is the resulting tree?
SINGLE ROTATION EXAMPLE

- 19 must move up to where 22 was
 - 20 changes parents
 - Balances are recomputed throughout the tree
AVL “ROTATION”

• These two rotations (right-right and left-left) are symmetric and can be solved the same way
 • Named by the location of the added node relative to the unbalanced node
 • What are the other two cases?
AVL “ROTATION”

• Right left case
 • Again, A is out of balance
 • This time, the addition (B) comes between A and C
 • In this case, the grandchild must become the root.
AVL “ROTATION”

• Identifying what should be the new root is key
• Imagine “lifting” up the root
• Where will the children have to go to maintain the search property?
AVL “ROTATION”

• This is for your reference later.
AVL “ROTATION”

- Let’s do an example. Insert(13)
AVL “ROTATION”

- Where is the imbalance?
AVL “ROTATION”

- Where is the imbalance?
AVL “ROTATION”

• Where is the imbalance? (also 7 and 10)
AVL “ROTATION”

- What must be the new root?
AVL “ROTATION”

- What must be the new root?
• What must be the new root? Why?
AVL “ROTATION”

• What does the new tree look like?
AVL “ROTATION”

• The replaced root is always a child of the new root!
NEXT CLASS

• AVL Trees
 • Even more examples!
 • Showing that this actually gives us $O(\log n)$ height
 • Showing insert is $O(1)$

• Memory analysis
 • Formalization to help with confusion from last week