
3/7/2016

1

CSE373: Data Structures and Algorithms

Divide and Conquer:
The Fast Fourier Transform

Steve Tanimoto

Winter 2016

Fourier Transforms

• Joseph Fourier observed that any continuous function f(x) can 
be expressed as a sum of sine functions   sin( x + ), each 
one suitably amplified and shifted in phase.

• His object was to characterize the rate of heat transfer in 
materials.

• The transform named in his honor is a mathematical technique 
that can be used for data analysis, compression, synthesis in 
many fields.

Winter 2016 2CSE 373: Data Structures & Algorithms

Definition

• Let f = f0, ... ,fn-1 be a vector of n complex numbers.

• The discrete Fourier transform of f is another vector of n 
complex numbers F = F0, ... ,Fn-1 each given by:

• Here   i =  (the imaginary unit)

Winter 2016 3CSE 373: Data Structures & Algorithms

Nth roots of unity

• The factors                               are nth roots of unity:

• They are solutions to the equation xn = 1.

• Define 

• This is a principal nth root of unity, meaning if k = 1 then k  is a 
multiple of n.

• All the other factors are powers of  .  There are only n distinct 
powers that are relevant, when processing a vector of length n.

Winter 2016 4CSE 373: Data Structures & Algorithms

Complex exponentials as waves

• ei = cos  + i sin 
• real(ei )   = cos 
• imag(ei ) = sin 

Winter 2016 5CSE 373: Data Structures & Algorithms

The DFT as a Linear Transformation

Winter 2016 6CSE 373: Data Structures & Algorithms



3/7/2016

2

Computing the Discrete Fourier Transform

Winter 2016 7CSE 373: Data Structures & Algorithms

Direct method:
Assume the complex exponentials are precomputed.

n2 complex multiplications
n(n-1)      complex additions

Divide and Conquer

• Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

• Solve subproblems recursively or with a direct method

• Combine the results of subproblems

• Apply dynamic programming, if possible

Winter 2016 8CSE 373: Data Structures & Algorithms

A Recursive Fast Fourier Transform

def FFT(f):

n = len(f)

if n==1: return [f[0]] # basis case

F = n*[0] # Initialize results to 0.

f_even = f[0::2] # Divide – even subproblem.

f_odd = f[1::2] #   “    - odd  subproblem

F_even = FFT(f_even) # recursive call

F_odd = FFT(f_odd) #   “

n2 = int(n/2) # Prepare to combine results

for i in range(n2):

twiddle = exp(-2*pi*1j*i/n) # These could be precomputed

oddTerm = F_odd[i] * twiddle # Odd terms need an adjustment

F[i]    = F_even[i] + oddTerm # Compute a new term

F[i+n2] = F_even[i] – oddTerm # Compute one more new term

return F

Winter 2016 9CSE 373: Data Structures & Algorithms

An N log N algorithm

Like in merge sort, in each recursive call, we divide the number of 
elements in half.  

The number of levels of recursive calls is therefore log2 N.

When we combine subproblem results, we spend linear time.

Total time is bounded by c N log N.

Winter 2016 10CSE 373: Data Structures & Algorithms

Unrolling the FFT

(more detailed views 
of how an FFT works)

Recursive FFT

FFT(n, [a0, a1, …, an-1]):
if n=1: return a0

Feven = FFT(n/2, [a0, a2, …, an-2])
Fodd = FFT(n/2, [a1, a3, …, an-1])
for k = 0 to n/2 – 1:

ωk = e2πik/n

yk = Feven k + ωk Fodd k

yk+n/2 = Feven k – ωk Fodd k

return [y0, y1, …, yn-1]



3/7/2016

3

The Butterfly Step

A data‐flow diagram connecting the inputs x
(left) to the outputs y that depend on them 
(right) for a "butterfly" step of a radix‐2 Cooley–
Tukey FFT.    This diagram resembles a butterfly.

http://en.wikipedia.org/wiki/Butterfly_diagram

Recursion Unrolled

Comments

• The FFT can be implemented:

• Iteratively, rather than recursively.

• In-place, (after putting the input in bit-reversed order)

• This diagram shows a radix-2, Cooley-Tukey, “decimation in 
time” FFT.

• Using a radix-4 implementation, the number of scalar multiplies 
and adds can be reduced by about 10 to 20 percent.

FFTs in Practice

There are many varieties of fast Fourier transforms.  They typically 
depend on the fact that N is a composite number, such as a 
power of 2.  

The radix need not be 2, and mixed radices can be used.

Formulations may be recursive or iterative, serial or parallel, etc.

There are also analog computers for Fourier transforms, such as 
those based on optical lens properties.

The Cooley-Tukey Fast Fourier Transform is often considered to be 
the most important numerical algorithm ever invented.  This is 
the method typically referred to by the term “FFT.”

The FFT can also be used for fast convolution, fast polynomial 
multiplication, and fast multiplication of large integers.

Winter 2016 16CSE 373: Data Structures & Algorithms


