

Steve Tanimoto Winter 2016

Computing the Discrete Fourier Transform $F_{k} = \sum_{i=0}^{n-1} f_{j} e^{(\frac{-2\pi i j k}{n})}$ Direct method: Assume the complex exponentials are precomputed. \mathbf{n}^2 complex multiplications n(n-1) complex additions Winter 2016 CSE 373: Data Structures & Algorithms 7

Unrolling the FFT (more detailed views of how an FFT works)

Recursive FFT

FFT(n, [a₀, a₁, ..., a_{n-1}]): if n=1: return a₀ $\begin{aligned} & \mathsf{F}_{\mathsf{even}} = \mathsf{FFT}(n/2, [a_0, a_2, ..., a_{n-2}]) \\ & \mathsf{F}_{\mathsf{odd}} = \mathsf{FFT}(n/2, [a_1, a_3, ..., a_{n-1}]) \\ & \mathsf{for} \ \mathsf{k} = 0 \ \mathsf{to} \ n/2 - 1: \end{aligned}$ $\begin{aligned} & \text{for } k = 0 \text{ to } h/2 - 1; \\ & \omega^k = e^{2\pi i k/n} \\ & y^k = F_{\text{even } k} + \omega^k \text{ F}_{\text{odd } k} \\ & y^{k+n/2} = F_{\text{even } k} - \omega^k \text{ F}_{\text{odd } k} \\ & \text{return } [y_0, y_1, \dots, y_{n-1}] \end{aligned}$

Comments

- The FFT can be implemented:
- · Iteratively, rather than recursively.
- In-place, (after putting the input in bit-reversed order)
- This diagram shows a radix-2, Cooley-Tukey, "decimation in time" FFT.
- Using a radix-4 implementation, the number of scalar multiplies and adds can be reduced by about 10 to 20 percent.

FFTs in Pra	actice	
There are many v depend on the power of 2.	arieties of fast Fourier transforms. They the fact that N is a composite number, such a	ypically is a
The radix need not be 2, and mixed radices can be used.		
Formulations may be recursive or iterative, serial or parallel, etc.		
There are also an those based or	alog computers for Fourier transforms, su n optical lens properties.	ch as
The Cooley-Tukey Fast Fourier Transform is often considered to be the most important numerical algorithm ever invented. This is the method typically referred to by the term "FFT." The FFT can also be used for fast convolution, fast polynomial multiplication, and fast multiplication of large integers.		
Winter 2016	CSE 373: Data Structures & Algorithms	16