

CSE373: Data Structures and Algorithms

Bucket Sort and Radix Sort

Steve Tanimoto Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington. Thank you to all who have contributed!

Radix sort

- Origins go back to the 1890 U.S. census
- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit
 - Keeping sort stable
 - Do one pass per digit
 - Invariant: After k passes (digits), the last k digits are sorted

Winter 2016 CSE 373: Data Structures & Algorithms

Analysis

Input size: n

Number of buckets = Radix: B

Number of passes = "Digits": P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Run-time proportional to: 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Winter 2016

CSE 373: Data Structures & Algorithms

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for "below a cut-off" to help divide-and-conquer sorts
- O(n log n) sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- Ω (n log n) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of possible key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

Winter 2016

CSE 373: Data Structures & Algorithms

Done with sorting! (phew..)

- Moving on....
- There are many many algorithm techniques in the world
 - We've learned a few
- What are a few other "classic" algorithm techniques you should at least have heard of?
 - And what are the main ideas behind how they work?

Winter 2016

CSE 373: Data Structures & Algorithms

10